首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic liquids grafted with multiwalled-nanotubes (CNT Br/NTf2), involving hydrophilic bromide salt and hydrophobic bis(trifluoromethanesulphonyl)imide salt, were prepared by amidation, followed by an easy solution-casting method of blending CNT Br/NTf2 with sodium polyacrylate (PAA) as well as crosslinking agent (XR-100) to form PAA hybrid nanocomposites. The uniform dispersion of CNT Br/NTf2 were analyzed by TEM. The defects and physical properties of fillers were characterized by Raman spectroscopy, Contact angle test, and TGA. Furthermore, microstructures of hybrid nanocomposites were characterized by SEM, from which it can be found that fillers were homogeneously distributed in the PAA matrix. CNT Br/NTf2 significantly improved the mechanical properties and tensile fatigue resistance, as well as offered tunable swelling behavior of PAA nanocomposites without wasting too much of thermal stability. This study offers a simple approach to develop multifunctional materials based on ionic liquids covalently modified MWCNTs PAA nanocomposites.  相似文献   

2.
Multi‐walled carbon nanotube (MWCNT) was non‐covalently functionalized with room‐temperature ionic liquid (IL), 1‐butyl‐3‐methyl‐imidazolium tetrafluoroborate and blended with epoxy pre‐polymer (ER) with the assistance of ultrasonication in the presence of acetone as a diluting medium. The ability of IL in improving the dispersion of MWCNT in epoxy pre‐polymer was evidenced by transmission optical microscopy. The corresponding epoxy/MWCNT networks cured with anhydride displayed an increase of the electrical conductivity of around three orders of magnitude with the addition of IL in a proportion of MWCNT/IL = 1:5 mass ratio. The effect of IL on dynamic mechanical properties and thermal conductivity was also evaluated. The improved thermal and electrical properties was attributed to the better dispersion of MWCNT within the epoxy matrix by IL, evidenced by transmission electron microscopy of the ER/MWCNT networks cured with anhydride. Raman spectroscopy was also used to confirm the interaction between MWCNT and IL. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43976.  相似文献   

3.
In this study, multiwall carbon nanotubes (MWNTs) functionalized by m‐xylylenediamine is used as thermal conductive fillers to improve their dispersibility in epoxy resin and the thermal conductivity of the MWNTs/bisphenol‐A glycidol ether epoxy resin composites. Functionalization with amine groups of MWNTs is achieved after such steps as carboxylation, acylation and amidation. The thermal conductivity, impact strength, flexural strength, and fracture surfaces of MWNTs/epoxy composites are investigated with different MWNTs. The results show that m‐xylylenediamine is successfully grafted onto the surface of the MWNTs and the mass fraction of the organic molecules grafted onto MWNTs is about 20 wt %. The thermal conductivity of MWNTs/epoxy composites is further enhanced to 1.236 W/mK with 2 wt % m‐MWNTs. When the content of m‐MWNTs is 1.5 wt %, the impact strength and flexural strength of the composites are 25.85 KJ/m2, 128.1 MPa, respectively. Scanning electron microscope (SEM) results show that the fracture pattern of composites is changed from brittle fracture to ductile fracture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41255.  相似文献   

4.
To facilitate the dispersion of single‐walled carbon nanotubes (SWCNT) into poly(methyl methacrylate) (PMMA), SWCNT were functionalized with a RAFT chain transfer agent, and PMMA was grafted from the SWCNT by reversible addition–fragmentation transfer (RAFT) polymerization to give SWCNT‐g‐PMMA containing 6 wt % PMMA. SWCNT‐g‐PMMA in the form of small bundles was dispersed into PMMA matrices. The SWCNT‐g‐PMMA filler increased the glass transition temperature (Tg) of the composite when the matrix molecular weight Mn was less than the graft molecular weight, but not when the matrix Mn was equal to or greater than the graft Mn. The threshold of electrical conductivity of the composites as a function of weight percent SWCNT increased from 0.2% when matrix Mn was less than graft Mn to about 1% when matrix Mn was greater than graft Mn. Dynamic mechanical analyses of the composites having graft Mn less than or equal to matrix Mn showed broader rubbery plateaus with increased SWCNT content but no significant differences between samples with different grafted PMMAs. The results indicate that lower Mn matrix wets the SWCNT‐g‐PMMA whereas higher Mn matrix does not wet the SWCNT‐g‐PMMA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39884.  相似文献   

5.
Carbon nanotubes (CNTs) have seen increased interest from manufacturers as a nanofiber filler for the enhancement of various physical and mechanical properties. A major drawback for widespread commercial use has been the cost associated with growing, functionalizing, and incorporating CNTs into commercially available polymeric matrices. Accordingly, the main objective of this study was to investigate the effects of adding commercially viable functionalized multiwalled carbon nanotubes (MWCNT) to a commercially available epoxy matrix. The mechanical behavior of the nanocomposites was investigated by mechanical testing in tensile mode and fractures were examined by scanning electron microscopy. The thermal behavior was investigated by differential scanning calorimetry and thermogravimetric analysis. Molecular composition was analyzed by attenuated total reflectance Fourier transform infrared spectroscopy. Mechanical testing of the epoxy/functionalized‐MWCNT indicated that the 0.15 wt % functionalized MWCNT composite possessed the highest engineering stress and toughness out of the systems evaluated without affecting the Young's modulus of the material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Functionalized multiwalled carbon nanotubes (MWCNTs) were synthesized with ethane diamine and polyethylenimine (PEI) with molecular weights of 1800 [MWCNT‐PEI weight‐average molecular weight (Mw) = 1800] and 70,000 (MWCNT‐PEI Mw = 70,000), respectively. The structures and properties of the ethane diamine functionalized MWCNTs and PEI‐functionalized MWCNTs were characterized by Raman spectroscopy, thermogravimetric analysis, X‐ray powder diffraction, and scanning electron microscopy. An increase with the D/G (D, Disorder band; G, Graphite) ratio of the functionalized MWCNTs in the Raman spectra proved that the ethane diamine and PEI were successfully bonded to the surface of the pristine MWCNTs. The results of TGA also confirmed this. In addition, the structure of the functionalized MWCNTs showed no significant changes compared with the pristine MWCNTs; this was confirmed by X‐ray powder diffraction. Hydrogen sulfide (H2S) sorption on the functionalized MWCNTs was studied by UV spectroscopy. As expected, the results of UV spectroscopy shows that the MWCNTs bonded with higher molecular weight PEI had a more excellent H2S adsorption efficiency than those bonded with low‐molecular‐weight PEI and ethane diamine, a micromolecular amine. The effects of the pH and temperature on the adsorption of H2S were also studied. Under the conditions investigated, the maximum first‐time H2S adsorption efficiency of 1.94 mmol/g was observed for MWCNT‐PEI (Mw = 70,000) in the 60 mg/L sodium hydrosulfide (NaHS) aqueous solution. In addition, the H2S reversible adsorption of the functionalized MWCNTs was conducted, and the second‐time H2S adsorption efficiency of MWCNT‐PEI (Mw = 70,000) reached 1.83 mmol/g in the 60 mg/L NaHS aqueous solution. The results demonstrate that the MWCNTs decorated with high‐molecular‐weight PEI were potentially excellent and reversible H2S adsorbents. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44742.  相似文献   

7.
The basic objective of this study is to investigate the mechanical properties of tyre tread compounds by gradual replacement of carbon black by multiwalled carbon nanotubes (MWCNTs) in a natural rubber–butadiene rubber‐based system. A rapid change in the mechanical properties is noticed even at very low concentrations of nanotubes though the total concentration of the filler is kept constant at 25 phr (parts per hundred rubber). The correlation of the bound rubber content with MWCNT loading directly supports the conclusion that MWCNTs increase the occluded rubber fraction. Transmission electron microscopy reveals a good dispersion of the MWCNT up to a certain concentration. In the presence of MWCNT, a prominent negative shift of the glass transition temperature of the compound is found. Thermal degradation behavior, aging, and swelling experiments were also carried out to understand the resulting effect of the incorporation of MWCNT in the rubber matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3153–3160, 2013  相似文献   

8.
The quasi‐static fracture and dynamic fatigue behaviors of natural rubber composites reinforced with hybrid carbon nanotube bundles (CNTBs) and carbon black (CB) at similar hardness values were investigated on the basis of fracture mechanical methods. Mechanical measurement and J‐integral tests were carried out to characterize the quasi‐static fracture resistance. Dynamic fatigue tests were performed under cyclic constant strain conditions with single‐edged notched test pieces. The results indicate that synergistic effects between CNTBs and CB on the mechanical properties, fracture, and fatigue resistance were obtained. The composite reinforced with 3‐phr CNTBs displayed the strongest fatigue resistance. The synergistic mechanisms and dominating factors of quasi‐static and dynamic failure, such as the dispersion state of nanotubes, hybrid filler network structure, strain‐induced crystallization, tearing energy input, and viscoelastic hysteresis loss, were examined. The weakest fatigue resistance of the composite filled with 5‐phr CNTBs was ascribed to its strikingly high hysteresis, which resulted in marked heat generation under dynamic fatigue conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42075.  相似文献   

9.
Hyperbranched polymers have been found effective in controlling the dispersibility of carbon nanotubes in aqueous solutions. In this study, hyperbranched polylysine (HBPL) was synthesized using lysine and N,N′‐methylenebisacrylamide as precursors via Michael addition. The HBPL then was used to noncovalently modify multiwalled carbon nanotubes (MWCNTs) to prepare MWCNTs‐HBPL. The obtained MWCNTs‐HBPL composites were characterized using FTIR spectroscopy, Raman spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results showed that the HBPL was successfully attached to the surface of MWCNTs via noncovalent interactions. The dispersibility of the MWCNTs‐HBPL composites in aqueous solutions was investigated using digital photographs, ultraviolet–visible absorption spectroscopy, and zeta potential measurements. The results demonstrated that both the mass ratio of MWCNT to HBPL and the pH of the solution had a significant impact on the dispersibility of the MWCNTs/HBPL solution, suggesting that HBPL treatment is an effective method of controlling the dispersibility of MWCNTs in aqueous solutions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46249.  相似文献   

10.
A novel electrophoretic deposition (EPD) method was employed for grafting multiwalled carbon nanotubes (MWCNTs) on carbon fibers, which, after impregnation with bisphenol A dicyanate ester (BADCy), synergistically reinforced BADCy matrix composites (CNT‐C/BADCy). The effect of MWCNT presence on the mechanical properties of the composites was investigated. Composite tensile strength increased by 45.2% for an EPD duration of 2 min, while flexural strength exhibited a decreasing trend with EPD duration. Optical microscopy revealed that the existence of MWCNTs enhanced the fiber‐matrix interface while a large number of CNTs were observed to have pulled‐out from the matrix, a finding which explained the observed tensile strength increase in terms of energy dissipation by the specific toughening mechanism. The flexural strength decrease of the composites with CNTs as compared to specimens without nanotubes was found linked to the increased stress concentration in the BADCy matrix due to tube presence which weakens the adhesion between carbon fabrics. In a word, carbon nanotubes will enhance the micro interface and weaken the macro interface of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45100.  相似文献   

11.
Novel hybrid poly(vinylidene fluoride) ultrafiltration membranes were fabricated via immersion precipitation method through the incorporation of the halloysite nanotubes functionalized with 1‐methyl‐3–(3‐triethoxysilypropyl) imidazolium chloride. The modified halloysite nanotubes were confirmed by Fourier transform infrared spectrometer, thermogravimetric analysis, and transmission electron microscopy. The morphologies of hybrid membranes were characterized by atomic force microscopy and energy dispersive spectrometer, while the filtration and antifouling performance were investigated by means of porosity, mean pore radius, pure water permeability, rejection ratio, and flux recovery ratio. The addition of the modified halloysite nanotubes obviously improved the membrane hydrophilicity. Besides, the flux recovery ratios were as high as 96% for humic acid and 94% for bovine serum albumin after two filtration cycles. Finally, the modified membranes were used to separate diesel oil–water emulsions. The rejection ratio and flux recovery ratio were as high as 99% and 94%, respectively. The poly(vinylidene fluoride) membranes incorporated by the novel halloysite nanotubes provided a promising alternative for oil–water emulsions separation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46278.  相似文献   

12.
In this work, approach to use of noncovalently modified carbon nanotubes is given for preparation of functional hybrid polymeric composite materials (HPCM) based on epoxy resin. Conductive glass‐fiber plastics with resistivity in transverse and lengthwise direction 9.0·× 102 and 30–50 Ohm cm, respectively, were obtained. The tetrafluoroethylene telomer and fluorocontaining organosilicon copolymer with amino groups were used as modifiers for carbon nanotubes. Thermal, electrical, and mechanical properties of the obtained materials were studied. The mechanism of the effect of noncovalent modification of carbon nanotubes on functional properties of HPCM was discussed. It was found, that type of modifier significantly affects the level of functional properties. The use of fluorocontaining organosilicon copolymer is more optimal in comparison with tetrafluoroethylene telomer. Thus, HPCM with carbon‐fiber filler and this modifier has higher electrical conductivity and lightning strike resistance in comparison with nonmodified HPCM. This approach is promising to impart antistatic properties for glass‐fiber plastics and increase lightning resistance of carbon‐fiber plastics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46108.  相似文献   

13.
In this study, nanosheets including graphene oxide (GO) and reduced graphene oxide (rGO), were incorporated into natural rubber (NR), to study the effects of substituting GO or rGO for carbon black (CB) on the structure and performance of NR/CB composites. The morphological observations revealed the dispersion of CB was improved by partially substituting nanosheets for CB. The improvements in static and dynamic mechanical properties were achieved at small substitution content of GO or rGO nanosheets. With substitution of rGO nanosheets, significant improvement in flex cracking resistance was achieved. NR/CB/rGO (NRG) composites has a much lower heat build‐up value compared with NR/CB/GO (NG) composites at a high load of nanosheets. However, both GO and rGO tended to aggregate at a high concentration, which led to the poor efficiency on enhancing the dynamic properties, or even deteriorate the performance of rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41832.  相似文献   

14.
Pre-impregnated carbon fiber/epoxy resin (CF/epoxy prepreg) gained its popularity for significant stress applications, especially in the aerospace industry, owing to its excellent resistance and low specific mass. However, these CF/epoxy prepregs have a tendency to crack propagation. A solution for the prepregs fragility is the addition of carbon nanotubes (CNTs), especially those functionalized with amino groups, reinforcing the material due to its exceptional mechanical properties. In this work, the influence of the carbon chain length of two different amino-functionalized CNTs from diverse backgrounds (commercial and laboratory growth CNTs) is studied. The nanofillers were added in CF/epoxy prepregs by dry spraying without solvent aid. CNTs' samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis (TGA), while the composites were analyzed by TGA, dynamic-mechanical analysis, and field emission scanning electron microscopy. The various surface treatment occurred at different levels according to the CNTs background, and all samples exhibited a distinct behavior. These differences were also observed in the composites' thermomechanical performance: CNTs functionalized with larger carbon chain amine presented the best results, with an increase of almost 100% in the storage moduli (E'), confirming the efficiency of amino-functionalized CNTs in the reinforcement of CF/epoxy prepregs.  相似文献   

15.
The effects of natural rubber (NR) on the mechanical, thermal, and morphological properties of multiwalled carbon nanotube (CNT) reinforced poly(lactic acid) (PLA) nanocomposites prepared by melt blending were investigated. A PLA/NR blend and PLA/CNT nanocomposites were also produced for comparison. The tensile strength and Young's modulus of PLA/CNT nanocomposites improved significantly, whereas the impact strength decreased compared to neat PLA. The incorporation of NR into PLA/CNT significantly improved the impact strength and elongation at break of the nanocomposites, which showed approximately 200% and 850% increases at 20 wt % NR, respectively. However, the tensile strength and Young's modulus of PLA/NR/CNT nanocomposites decreased compared to PLA/CNT nanocomposites. The morphology analysis showed the homogeneous dispersion of NR particles in PLA/NR/CNT nanocomposites, while CNTs preferentially reside in the NR phase rather than the PLA matrix. In addition, the incorporation of NR into PLA/CNT lowered the thermal stability and glass‐transition temperature of the nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44344.  相似文献   

16.
Multiwall carbon nanotubes (MWCNTs) with liquid‐like behavior at room temperature were prepared with sulfonic acid terminated organosilanes as corona and tertiary amine as canopy. The liquid‐like MWCNT derivative had low viscosity at room temperature (3.89 Pa s at 20°C) and exhibited non‐Newtonian shear‐thinning behavior. The weight fraction of MWCNT in the derivative was 16.72%. The MWCNT derivative showed very good dispersion in organic solvents, such as ethanol and acetone. The liquid‐like MWCNT derivative was incorporated into epoxy matrix to investigate the mechanical performance of the nanocomposites and the distribution of MWCNTs in the matrix. When the liquid‐like MWCNT derivative content was up to 1 wt %, the flexural strength and impact toughness of composites were 12.1 and 124% higher than the pure epoxy matrix, respectively. Transmission electron microscope (TEM) confirmed the very good dispersion of the liquid‐like MWCNT derivative in epoxy matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2217–2224, 2013  相似文献   

17.
Four kinds of counter electrodes are prepared with polystyrene‐sulfonate doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐PSS) as basic material, reduced graphene oxide (rGO) sheets as additives and H2SO4 as treating agent. The cyclic voltammetry and Tafel polarization are measured to evaluate catalytic activity of these counter electrodes for /I? redox couple. It is found that H2SO4 treated rGO and PEDOT‐PSS hybrid counter electrode (S/rGO/PEDOT‐PSS counter electrode) has the highest catalytic activity among these counter electrodes. Power conversion efficiency of the dye‐sensitized solar cell with S/rGO/PEDOT‐PSS counter electrode can attain to 7.065%, distinctly higher than that of the cells with the other three ones, owing to the great enhanced fill factor and short‐circuit current density. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42648.  相似文献   

18.
In this work, the silane coupling agent bis‐(triethoxysilylpropyl) ‐tetrasulfide (TESPT) is used to modify the carbon nanotubes. After modification, carbon nanotubes can be well dispersed in the natural rubber (NR) matrix and form a strong and flexible network. Based on the original real‐time crack tip morphology monitoring, crack propagation and scanning electronic microscopy tests, it is revealed that modified carbon nanotubes filled NR samples (NR/F‐CNTs) have better crack resistance. It is found that modified carbon nanotubes can resist the cavitation process during cyclic loading. Crack tip morphology monitoring tests indicate that the crack tip of NR/F‐CNTs is rougher and the ligaments are thinner and densely distributed. A crack branching phenomenon is also observed. It proves that F‐CNTs increase the energy consumption of NR during cyclic loading. It is concluded that the F‐CNTs used in this work improve the crack resistance of NR in two ways: the one is cavitation resistance and the other is the increase of energy consumption for crack propagation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44527.  相似文献   

19.
This article reports a study on the strain‐sensitive conductivity (tensoresistivity) and mechanical properties of polyvinyl chloride/multiwalled carbon nanotube (PVC/MWCNT) composites subjected to tensile loading at different strain rates for potential use in sensor‐enabled geosynthetics and other applications involving electrically conductive polymer composites. Results indicate that adding 0.5 wt % MWCNT to the composite results in 57% reduction in its ultimate (failure) strain and a fivefold increase in its tensile modulus while leaving its ultimate strength almost unchanged. Laser scanning confocal microscopy is used to investigate the microscopic failure mechanism of the composite and how it contributes to the strain‐sensitive conductivity of the composites. It is observed that tensile fractures are initiated from inside the largest bundles between 18% and 36% strain and continue through further fractal‐like fracturing in smaller bundles. Gauge factors (e.g., 3.17) comparable to or exceeding those of typical strain gauges are obtained for the composite, indicating its strong potential for structural performance monitoring and damage detection applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43665.  相似文献   

20.
In this study, composites based on a thermoset polyurethane elastomer (PU) and multiwalled carbon nanotubes (MWCNT) in the case of a PU of high elastic modulus (>200 MPa) are analyzed for the first time. As‐grown and modified nanotubes with 4 wt % of oxygenated functions (MWCNT‐ox) were employed to compare their effect on composite properties and maxima mechanical properties (elastic modulus and tensile strength) were reached at 0.5 wt % of MWCNT‐ox. Furthermore, by examining the morphology using optical and electron microscopies better dispersion and interaction of the nanotube‐matrix was observed for this material. DMTA data supports the observation of an increase in the glass transition temperature of ~20°C in the nanocomposites compared with the thermoset PU, which is an important result because it shows extended reliability in extreme environments. Finally, nanoindentation tests allowed a comparison with the conventional mechanical tests by measuring the elastic modulus and hardness at the subsurface of PU and the nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41207.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号