首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

2.
Poly(lactic acid) (PLA) composite filaments with different copper (Cu) contents as high as 40 and 20 wt% of poly(methyl methacrylate) (PMMA) beads have been fabricated by twin-screw extruder for 3D printing. A fused-deposition modeling (FDM) 3D printing technology has been used to print the PLA composites containing hybrid fillers of Cu particles and PMMA beads. The morphology, mechanical, and thermal properties of the printed PLA composites were investigated. The tensile strength was slightly decreased, but storage modulus and thermal conductivity of PLA composites were significantly improved by adding Cu particles in the presence of PMMA beads. The PLA composites with hybrid fillers of 40 wt% of Cu particles and 20 wt% of PMMA beads resulted in thermal conductivity of 0.49 W m−1 K−1 which was three times higher than that of the bare PLA resin. The facilitation of the segregated network of high-thermally conductive Cu particles with the PMMA beads in PLA matrix provided thermally conductive pathways and resulted in a remarkable enhancement in thermal conductivity.  相似文献   

3.
Polyimide (PI) composites with mixed fillers of BN flakes and SiC whiskers exhibit enhanced thermal conductivity and mechanical properties. In order to improve dispersion and interaction of these mixed fillers within the PI matrix, BN flakes were modified by a titanate coupling agent while SiC whiskers were oxidized at 750°C for 60 minutes to produce SiC@SiO2 followed by silane coupling agent modification. PI composites reached a maximum thermal conductivity of 0.95 W/m K at volume fraction of mixed fillers of 27.6 vol% when the weight ratio of BN flakes to SiC@SiO2 whiskers was 1:4. The enhanced thermal conductivity is likely attributed to the formation of heat conductive networks constructed by BN flakes and SiC@SiO2 whiskers and the improved interfacial affinity between fillers and matrix. The optimized Nielsen-mold confirms the distribution and morphology of fillers affect the thermal conductivity of PI composites. In addition, SiC whiskers enhanced the mechanical property of PI composites and the influence of fillers on the mechanical property was further elaborated.  相似文献   

4.
To develop thermally conductive PA6 composites with the aim of decreasing filler content, structure-complexed fillers were fabricated. This research presented an effective approach by noncovalent functionalization of poly(dopamine) (PDA) followed by silver nanoparticles decoration to fabricate 3-dimensional (3-D) structured boron nitride hybrids (BN@PDA@AgNPs). BN hybrids were then introduced into PA6 to prepare thermally conductive PA6 composites. The results demonstrated that PA6/BN hybrids (PMB) composites exhibited higher thermal conducivity compared with PA6/BN composites, which revealed more effective construction of thermal conductive network in the composites with the addition of 3-D structured fillers. The effects of BN hybrids with different loadings on thermal stability, mechanical property, as well as electrical resistance of the composites were also analyzed. Overall, the prepared PMB composites exhibited outstanding performance in thermal conductivity, thermal stability, mechanical property, while retaining good electrical insulating property, which showed a potential application in electronic packaging fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47630.  相似文献   

5.
In situ electrical conductivity and X‐ray tomography experiments are conducted on a conductive polymer composite containing polyvinylidene fluoride (PVDF) copolymer, copper (Cu), and tin (Sn) during thermal annealing. During annealing, the electrical resistivity drops by an order of magnitude, while X‐ray tomography, electron microscopy, and spectroscopy results show increasingly homogeneous dispersion of Sn in the conductive filler network, accompanied by the formation of Cu–Sn intermetallic around Cu and Sn particles. This study provides detailed insight into the morphological origins of the beneficial effect of thermal annealing on the electrical properties of conductive composites containing low melting metal fillers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45399.  相似文献   

6.
Increasing utilization of the electrical properties of polymeric blends and composites has prompted our renewed interest in developing a general working relationship which can explain the electrical properties of polymer composites and blends in terms of processing characteristics, morphology, and compositions. Here, we restrict our attention to the following two-component systems: (1) two component systems with conductive particulate inclusions (e.g. carbon black) embedded in a continuous polymeric matrix, and (2) two component polymer blend systems with one conductive polymer (e.g., polyether copolymer) dispersed in another continuous polymeric matrix. The following processing aspects related to the electrical property of particulate filled composites are discussed: (1) critical concentration of rigid conductive fillers, ?c, and (2) redistribution of conductive fillers upon processing. An equation based on the crowding factor of concentrated suspension rheology and Janzen's particle contacts percolation is proposed to describe the relationship between ?c, and the maximum packing fraction of conductive fillers. The relationship is used to explain the influence of particle morphology on conductivity, and the conductivity difference in the high shear and the low shear region of a processed polymer composite part. Furthermore, some qualitative guidelines for blending a low conductivity polyether copolymer to achieve an overall balance of antistatic and mechanical properties of polymer blends are also discussed.  相似文献   

7.
The thermal and electrical conductivity of resins can be increased by adding conductive carbon fillers. One emerging market for thermally and electrically conductive resins is for bipolar plates for use in fuel cells. In this study, varying amounts of five different types of carbon, one carbon black, two synthetic graphites, one natural flake graphite, and one calcined needle coke, were added to Vectra A950RX Liquid Crystal Polymer. The resulting composites containing only one type of filler were then tested for thermal and electrical conductivity. The objective of this work was to determine which carbon filler produced a composite with the highest thermal and electrical conductivity. The results showed that composites containing Thermocarb TC‐300 synthetic graphite particles had the highest thermal and electrical conductivity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99; 1552–1558, 2006  相似文献   

8.
In this article, copper (Cu) crystallites were successfully prepared via low temperature molten salt method, and the possible formation mechanisms were proposed. The conductive fillers of multiwalled carbon nanotubes (MWCNTs) and as‐prepared Cu particles were designed and introduced into acrylonitrile‐butadiene‐styrene (ABS) blend to prepare different conductive composites. The dispersion states of conductive fillers and the morphologies of the composites were characterized using a field emission scanning electron microscope. The electrical resistivity of different composites was measured. The results showed that Cu and MWCNTs exhibited a synergistic effect in decreasing the electrical resistivity of the Cu/MWCNTs/ABS composites, because Cu that could locate between MWCNTs chain segments provides a better charge transport in the conductive pathways. Compared with pure ABS, the tensile strength, elastic modulus and thermal stability of the Cu/MWCNTs/ABS composites were significantly improved with the incorporation of Cu and MWCNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41738.  相似文献   

9.
Metal alloys with low melting temperatures may be blended into polymers to improve their electrical conductivity. We review the preparation, morphology, and electrical conductivity of polymer composites based on low melting point metal alloys, with or without additional filler particles. Since such alloys can be liquid under melt processing conditions, the composite morphology is determined by phenomena such as coalescence of liquid metal drops, orientation of the liquid metal phase, or selective wetting of a second filler by the liquid metal. None of these phenomena appear in conductive composites based on more common conductive fillers such as carbon black, carbon nanotubes, or metal particles. The published literature suggests that composites based on low melting metal alloys, with or without additional non‐melting filler particles, can have much higher percolation thresholds and much higher electrical conductivity (~1,000 S/m) than those based on fillers such as carbon black or carbon nanotubes. Changes in other properties such as rheological or mechanical properties are also discussed. POLYM. ENG. SCI., 58:1010–1019, 2018. © 2017 Society of Plastics Engineers  相似文献   

10.
Thermally conductive epoxy nanocomposite with core–shell structured filler beads has been prepared. The core represents plasma-treated poly(methyl methacrylate) bead, and the shell, amine-functionalized reduced graphene oxide (frGO) sheets. The negatively charged core and the positively charged shell form core–shell unified structure through electrostatic attraction and the conductive bridges are formed among neighboring filler particles in the composite mass. The epoxy composite prepared with these core–shell structured filler shows a thermal conductivity of 0.72 W m−1 K−1 for an overall frGO concentration of as low as 0.96 wt %. Pal model has been applied to evaluate the effective thermal conductivity of frGO sheets that have been realized in the epoxy composition. Assuming the maximum possible volume packing fraction of the spherical beads for random jamming to be equal to 0.63, the effective thermal conductivity has been estimated as 280 W m−1 K−1. Evaluation of the effective thermal conductivity is a step forward to in-depth study of real contribution of the highly conductive fillers in the polymer composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47377.  相似文献   

11.
Combining thermal conductivity with electrical isolation is a very interesting topic for electronic applications in order to transfer the generated heat. Typical approaches combine thermally conductive fillers with a thermoplastic matrix. The aim of this work was to investigate the influence of different fillers and matrices on the thermal conductivity of the polymer matrix composites. In this study, various inorganic fillers, including aluminum oxide (Al2O3), zinc oxide (ZnO), and boron nitride (BN) with different shapes and sizes, were used in matrix polymers, such as polyamide 6 (PA6), polypropylene (PP), polycarbonate (PC), thermoplastic polyurethane (TPU), and polysulfone (PSU), to produce thermally conductive polymer matrix composites by compounding and injection molding. Using simple mathematical models (e.g., Agari model, Lewis–Nielson model), a first attempt was made to predict thermal conductivity from constituent properties. The materials were characterized by tensile testing, density measurement, and thermal conductivity measurement. Contact angle measurements and the calculated surface energy can be used to evaluate the wetting behavior, which correlates directly with the elastic modulus. Based on the aforementioned evaluations, we found that besides the volume fraction, the particle shape in combination with the intrinsic thermal conductivity of the filler has the greatest influence on the thermal conductivity of the composite.  相似文献   

12.
Adding conductive carbon fillers to insulating thermoplastic resins increases composite electrical and thermal conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity, while still allowing the material to be molded into a bipolar plate for a fuel cell. In this study, varying amounts of three different carbons (carbon black, synthetic graphite particles, and carbon fiber) were added to Vectra A950RX Liquid Crystal Polymer. The resulting single filler composites were tested for electrical resistivity (1/electrical conductivity) and thermal conductivity. In addition, the effects of single fillers and combinations of two different carbon fillers were studied via a factorial design. The results indicated that for the composites containing only single fillers, synthetic graphite, followed by carbon fiber, cause a statistically significant decrease in composite electrical resistivity. Composites containing only synthetic graphite, followed by carbon black, and then carbon fiber cause a statistically significant increase in thermal conductivity. For the combinations of two different fillers, the composites containing carbon black/synthetic graphite and synthetic graphite/carbon fiber had a statistically significant and positive effect on thermal conductivity. It is possible that thermally conductive pathways are formed that “link” these carbon fillers, which results in increased composite thermal conductivity. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
A scalable strategy to fabricate thermally conductive but electrically insulating polymer composites was urgently required in various applications including heat exchangers and electronic packages. In this work, multilayered ultrahigh molecular weight polyethylene (UHMWPE)/natural graphite (NG)/boron nitride (BN) composites were prepared by hot compressing the UHMWPE/NG layers and UHMWPE/BN layers alternately. Taking advantage of the internal properties of NG and BN fillers, the UHMWPE/NG layers played a decisive role in enhancing thermal conductivity (TC), while the UHMWPE/BN layers effectively blocked the electrically conductive pathways without affecting the thermal conductive pathways. The in-plane TC, electrical insulation, and heat spreading ability of multilayered UHMWPE/NG/BN composites increased with the increasing layer numbers. At the total fillers loading of 40 wt%, the in-plane TC of multilayered UHMWPE/NG/BN composites with nine layers was markedly improved to 6.319 Wm−1 K−1, outperforming UHMWPE/BN (4.735 Wm−1 K−1) and pure UHMWPE (0.305 Wm−1 K−1) by 33.45% and 1971.80%, respectively. Meanwhile, the UHMWPE/NG/BN composites still maintained an excellent electrically insulating property (volume resistance~5.40×1014 Ω cm ; breakdown voltage~1.52 kV/mm). Moreover, the multilayered UHMWPE/NG/BN composites also exhibited surpassing heat dissipation capability and mechanical properties. Our results provided an effective method to fabricate highly thermal conductive and electrical insulating composites.  相似文献   

14.
The present study was carried out to evaluate the performance of nickel-coated graphite (NCG) in comparison with graphite as conductive fillers in polypropylene (PP) matrix. Graphite exhibits smaller particle size and higher aspect ratio (length/thickness) than NCG particles. The results showed that the additions of graphite filler in PP exhibits higher tensile properties and electrical conductivity compared to NCG filled PP composites. The electrical results showed that the percolation threshold of graphite and NCG filled PP composites occurred in the range of 10 to 20 vol.% and 15 to 25 vol.%, respectively.  相似文献   

15.
Highly efficient electrical conductive networks were constructed in carbon‐black (CB)‐filled polyoxymethylene (POM)–thermoplastic polyurethane (TPU)–polyamide 6 (PA6) ternary blends through the formation of a hierarchical structure composed of a minor PA6 phase as droplets inside one major phase (TPU) and CB particles localized at the TPU–PA6 interface by thermodynamically induced self‐assembly. The hierarchical structure was thermodynamically predicted on the basis of the minimization of total interfacial energies and confirmed by electron microscopy. The degrees of the TPU phase continuity before and after the addition of PA6 were determined by solvent‐extraction experiments. The percolation threshold of CB decreased by 50% compared to that in the POM–TPU binary blend because of the more efficient formation of a CB conductive network through CB‐covered PA6 domains inside the TPU phase. The hierarchical structure not only increased the electrical conductivity of the composites but also improved their thermal stability in comparison with the simple structure formed by the homogeneously dispersed CB particles in POM. The method reported in this article can offer possibilities for improving the comprehensive properties of the conductive composites and the widening of their applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45877.  相似文献   

16.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

17.
To enhance the thermo-electrical properties of liquid silicone rubber (LSR) in applications, the carbon fibres (CFs) modified by multiwall carbon nanotubes (MWCNT) on the surfaces were used as the fillers. The MWCNT-modified CFs (MPCFs) were analysed by Fourier transform infrared spectra, thermogravimetric analysis, scanning electron micrograph and energy dispersive X-ray spectroscopy. It was found that MWCNT were successfully adsorbed onto the surface of CFs. The MPCFs functioned as conductive fillers in LSR for thermal and electrical conductivity application and exhibited significant enhancement. The effects of MPCFs loading on thermal conductivity and volume resistivity of LSR composites were investigated in detail. Results of this work revealed that the MPCFs/LSR composites possessed a thermal conductivity of 0.73?W?m?1?K?1 with 14?vol.-% filler loading, approximately 3.48-fold higher than that of pure LSR substrate. And with the increase of MPCFs loading, the least volume resistivity of MPCFs/LSR composites is 10?Ω?cm. Besides, compared with that of neat LSR, the tensile strength of MPCFs/LSR composites increased 0.913?MPa.  相似文献   

18.
For many applications of conductive rubbers, it is desirable to endow the conductive rubber with high conductivity at low conductive filler loading. In this work, composites based on ethylene‐propylene‐diene monomer (EPDM) rubber and nitrile‐butadiene rubber (NBR) were prepared using carbon blacks, carbon fibers, and silver powders as fillers. As the weight fraction of silver powder increased, the hardness of composites increased gradually while the tensile strength and elongation at break decreased. SEM revealed that the EPDM/NBR blends exhibited a relatively co‐continuous morphology. The differential scanning calorimetry (DSC) curves reported the EPDM/NBR rubber blends were incompatibility. The thermogravimetry (TG) studies showed that adding a small amount of silver powder could improve the thermal stability of composites. These conductive composites exhibited good electrical property. At room temperature, when the total volume fraction of fillers was 15.20%, the volume resistivity of EPDM/NBR blend was only 0.0058 Ω cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41357.  相似文献   

19.
The future of integrated circuits with three‐dimensional chip architecture hinges on the development of practical solutions for the management of excessive amounts of heat generation. This requires new polymer–matrix composites (PMCs), with good processibility, high effective thermal conductivity (keff), and low but tailored electrical conductivity (σ). This article explores the synergy of hybrid fillers: (i) hexagonal boron nitride (hBN) platelets with different sizes and shapes; (ii) hBN platelets with carbon‐based fillers promoting the keff of the polyphenylene sulfide (PPS) composites. It explores the promotion of interconnectivity among the fillers in the PPS matrix, leading to higher keff, by the uses of hybrid fillers. It discusses using carbon‐based fillers as secondary fillers to tailor the PMCs' σ. Finally, it presents the effects of hybrid fillers on the PMCs' coefficient of thermal expansion. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The silicone rubber with good thermal conductivity and electrical insulation was obtained by taking vinyl endblocked polymethylsiloxane as basic gum and thermally conductive, but electrically insulating hybrid Al2O3 powder as fillers. The effects of the amount of Al2O3 on the thermal conductivity, coefficient of thermal expansion (CTE), heat stability, and mechanical properties of the silicone rubber were investigated, and it was found that the thermal conductivity and heat stability increased, but the CTE decreased with increasing Al2O3 fillers content. The silicone rubber filled with hybrid Al2O3 fillers exhibited higher thermal conductivity compared with that filled with single particle size. Furthermore, a new type of thermally conductive silicone rubber composites, possessing thermal conductivity of 0.92 W/mK, good electrical insulation, and mechanical properties, was developed using electrical glass cloth as reinforcement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2478–2483, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号