首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

2.
Great achievements have been made in the research of biobased thermoplastic polymers, but the progress concerning thermosetting resins has been minor. In particular, research on high‐performance thermosetting polymers from renewable feedstock has not been reported elsewhere. A novel biobased epoxy was synthesized from a rosin acid. Its chemical structure was confirmed using 1H NMR, 13C NMR and Fourier transform infrared spectroscopy. The results indicated that the rosin‐based epoxy possessed high glass transition temperature (Tg = 153.8 °C), high storage modulus at room temperature (G′ = 2.4 GPa) and good thermal stability. A rosin‐based epoxy with excellent properties was achieved. The results suggest it is possible to develop high‐performance thermosetting resins from renewable resources. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
The poor cryogenic mechanical properties of epoxy resins restrict their extensive application in cryogenic engineering fields. In this study, a newly synthesized epoxy-functionalized polysiloxane (PSE) is used to improve the cryogenic mechanical properties of bisphenol-F epoxy resin. The Fourier transform infrared spectra and nuclear magnetic resonance confirm the formation of epoxy-functionalized –Si–O–Si– molecular chain. The surface free energy test results show that the PSE has a better compatibility with epoxy resin. The mechanical test results show that the cryogenic tensile strength, failure strain, fracture toughness, and impact strength of epoxy resin is improved significantly by adding the suitable amounts of PSE. Compared to the neat epoxy resin, the maximum tensile strength (196.92 MPa, an improvement of 11.2%), failure strain (2.97%, an improvement of 33.8%), fracture toughness (3.05 MPa·m1/2, an improvement of 30.7%) and impact strength (40.55 kJ m−2, an improvement of 14.8%) at cryogenic temperature (90 K) is obtained by incorporating 10 wt % PSE into the neat epoxy resin. Moreover, the results also indicated that the tensile strength, Young's modulus, and fracture toughness of epoxy resin with the same PSE content at 90 K are higher than that at room temperature (RT). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46930.  相似文献   

4.
The phase behavior of an epoxy adhesive toughened with a polyether was investigated. The adhesive, cured at 60°C, formed a separated island-phase structure with diameters of 0.4– 0.8 μ m, 3–5 μ m and 80–100 μ m at toughener contents of 10 phr, 20 phr and 30 phr, respectively. Phase inversion occurred at a toughener content of 40 phr. The bound-strength properties of the toughened adhesive were highly influenced by this phase behavior. The measured lap-shear strengths on aluminum at ?196°C, 25°C, 140°C and peel strength at 25°C for the adhesive containing 20 phr toughener and 75 phr aluminum powder were 26.5 MPa, 24.2 MPa, 11.0 MPa and 2.2 kN/m, respectively. This showed that the epoxy adhesive studied could be used in a wide temperature range of ?196°C – 140°C with good bound-strength properties.  相似文献   

5.
Epoxy composite foams with improved heat‐resistant property and efficient electromagnetic interference shielding effectiveness (EMI SE) were fabricated through a two‐step foaming technique. A sort of novel and untraditional expandable microspheres was adopted to reduce the density of prepared materials. A multiscale conductive network system composed of multiwalled carbon nanotubes (MWCNTs) and nickel‐plated carbon fibers (NiCFs) was introduced in these foams. Benefitting from the synergistic effect between NiCFs and MWCNTs, the multiscale epoxy foam with best comprehensive performance achieved a greatly enhanced Tg at 178.3 °C and an exceptional specific EMI SE ranging from 52.8 to 72.6 dB cm3 g?1 in X band (8.2–12.4 GHz) at low filler loading. These properties are greatly better than original epoxy foam with a Tg of 157.8 °C and specific EMI SE of 1.0–6.4 dB cm3 g?1. Their shielding mechanisms were discussed and the results showed that reflection is dominating. The effects of microspheres content, foaming temperature, NiCFs content, and length were investigated. In general, we provided a feasible, convenient and cost‐effective method to fabricate light‐weight, heat‐resistant thermosetting epoxy foams with sufficient EMI shielding performance which has a potential to be applied in aerospace or electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46013.  相似文献   

6.
Polyetheramine (PEA)-modified epoxies with various types of PEAs were prepared and respective effects on characteristics of epoxy networks were studied. The used PEAs were polyethylene glycol diamine (PEG-amine) and polypropylene glycol diamine (PPG-amine) with two different molecular weights (i.e., 200 and 400 g mol−1). According to mechanical tests, the structural parameters of PEAs played an important role in final properties of epoxy/amine systems. PEG400-amine and PPG200-amine had the highest and lowest effects on the properties of epoxy networks, respectively. Whereas 10 phr PEG400-amine increased critical stress intensity factor (KIC) and critical strain energy release rate (GIC) of the epoxy up to 82 and 294%, the same number of PPG200-amine chains caused to increase the KIC and GIC up to 11 and 34%. This discrepancy could be assigned to higher flexibility index (φ = 26.22), longer chain length (~27 atoms), and higher secondary interactions [δ = 9.69 (cal cm−3)0.5] of PEG400-amine in comparison with PPG200-amine [with φ = 8.08, ~10 atoms in chain, and δ = 8.98 (cal cm−3)0.5]. Shear yielding as a toughening mechanism was proposed based on microscopy of the crack tips. These in-depth studies could uncover underlying structure–property relationships in a relevant class of PEA-like modifiers, shedding light on the future design of top-performing homogeneous tough polymer networks. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47121.  相似文献   

7.
With an organic–inorganic polymer lightening material (EL) based on epoxy resin and an aromatic amine curing agent, through addition reaction, we synthesized an epoxy-cured resin coupled with an inorganic activation filler, microsilicon. First, epoxy resin bisphenol A 2-glycidyl ether (E-51) and the curing agent, m-phenylenediamine, were selected as the materials for the epoxy-curing system. The thermal stability of the epoxy-cured compound (EM) was studied by differential scanning calorimetry and thermogravimetric analysis. The glass-transition temperature (T g) of EM reached 131 °C, and the results show that T g and the thermal stability was raised when EM was kept at 150 °C for 12 h. Second, the inorganic active filler was modified with a titanate coupling agent and characterized by contact angle measurement and Fourier transform infrared spectroscopy, and the results show that the titanate coupling agent was successfully applied to the modification of the inorganic active filler. Finally, the performance of EL in a cement slurry system was also studied. The macroscopic data showed that the compressive strength of the cement stone increased from 8.6 MPa for the EM cement stone system to 13.2 MPa for the EL cement stone system. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 136, 47292.  相似文献   

8.
Novel‐fluorinated poly(etherimide)s (FPEIs) with controlled molecular weights were synthesized and characterized, which were used to toughen epoxy resins (EP/FPEI) and carbon fiber‐reinforced epoxy composites (CF/EP/FPEI). Experimental results indicated that the FPEIs possessed outstanding solubility, thermal, and mechanical properties. The thermally cured EP/FPEI resin showed obviously improved toughness with impact strength of 21.1 kJ/m2 and elongation at break of 4.6%, respectively. The EP/FPEI resin also showed outstanding mechanical strength with tensile strength of 91.5 MPa and flexural strength of 141.5 MPa, respectively. The mechanical moduli and thermal property of epoxy resins were not affected by blending with FPEIs. Furthermore, CF/EP/FPEI composite exhibited significantly improved toughness with Mode I interlaminar fracture toughness (GIC) of 899.4 J/m2 and Mode II interlaminar fracture toughness (GIIC) of 1017.8 J/m2, respectively. Flexural properties and interlaminar shear strength of the composite were slightly increased after toughening. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
A novel biphenyl epoxy monomer of p-methyl phenylhydroquinone epoxy resin (p-MEP) was synthesized and characterized. We researched its potential in the area of thermal conduction application and prepared a series of hybrid composites based on it with different mass ratios of sphere Al2O3 filler. From the good mobility and low viscosity of p-MEP, it allowed mixing with more Al2O3 fillers. The hybrid epoxy resins owned the advantages of traditional epoxy resins as well as quite considerable thermal conductivity. Therefore, the hybrid composite at the maximum mass fraction of 70% possess the highest thermal conductivity of 5.6 W mK−1, which is 5.6 times higher than that of pristine p-MEP (0.1 W mK−1). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47078.  相似文献   

10.
In this study, a novel reactive toughener for the epoxy resin was developed and compared with traditional hydroxyl‐terminated polybutadiene (HTPB). For this purpose, the highly reactive aliphatic amine‐terminated polybutadiene (ATPB) was synthesized at ambient conditions by nucleophilic substitution amination. The characterizations of the product were provided by Fourier transform infrared and 1H NMR spectroscopy. According to the mechanical test results, incorporation of ATPB into epoxy networks can significantly toughen the epoxy matrix. The addition of 10 phr ATPB increased the critical stress intensity factor (KIC) and critical strain energy release rate (GIC) of the epoxy from 0.85 to 2.16 MPa m1/2 and from 0.38 to 3.02 kJ m?2, respectively. Furthermore, unlike HTPB, the presence of the ATPB did not deteriorate the tensile strength of the matrix. The toughening and failure mechanisms were discussed based on the epoxy network morphological characteristics. The reduction in cross‐linking density and glass transition temperature of the epoxy system upon modification with liquid rubbers was confirmed by dynamic mechanical analysis. This article opens up the possibility of utilizing reactive flexible diamines with polybutadiene backbone as effective toughening agents for thermoset polymers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44061.  相似文献   

11.
A laser-heating zone-drawing and zone-annealing method using a continuous-wave carbon dioxide laser was applied to poly(ethylene terephthalate) (PET) fiber to improve its mechanical properties. The as-spun fiber was zone-drawn under a applied tension (σa) of 4.44 MPa at a laser power density (PD) of 6.08 W cm−2, and then the laser-heated zone-drawn fiber was zone-annealed. The laser-heating zone-annealing was carried out in three steps: the first annealing was carried out under σa = 139 MPa at 4.83 W cm−2; the second annealing was carried out under σa = 283 MPa at 4.83 W cm−2, and the third annealing was carried out under σa = 432 MPa at 3.45 W cm−2. The surface temperature distribution of the fiber irradiated with the CO2 laser was measured by using an infrared thermographic camera equipped with a magnifying lens. The relation between the laser power and the surface temperature of the fiber became clear in the laser-heating zone-drawing and the laser-heating zone-annealing. The fiber obtained finally had a birefringence of 0.239, a degree of crystallinity of 55%, a tensile modulus of 19.8 GPa, and a storage modulus of 25.7 GPa at 25°C. In FTIR measurements, a trans conformation increased with the processing, but a gauche one decreased. The laser-heating zone-drawing and zone-annealing method was found to be effective in producing the PET fiber with high modulus and high strength. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2775–2783, 2001  相似文献   

12.
Composites with good toughness properties were prepared from chemically modified soy epoxy resin and glass fiber without additional petroleum based toughening agent. Chlorinated soy epoxy (CSE) resin was prepared from soybean oil. The CSE was characterised by spectral, and titration method. The prepared CSE was blended with commercial epoxy resin in different ratios and cured at 85°C for 3 h, and post cured at 225°C for 2 h using m‐phenylene diamine (MPDA) as curing agent. The cure temperatures of epoxy/CSE/MPDA with different compositions were found to be in the range of (151.2–187.5°C). The composite laminates were fabricated using epoxy /CSE/MPDA‐glass fiber at different compositions. The mechanical properties such as tensile strength (248–299 MPa), tensile modulus (2.4–3.4 GPa), flexural strength (346–379 MPa), flexural modulus (6.3–7.8 GPa) and impact strength (29.7–34.2) were determined. The impact strength increased with the increase in the CSE content. The interlaminor fracture toughness (GIC) values also increased from 0.6953 KJ/m2 for neat epoxy resin to 0.9514 KJ/m2 for 15%CSE epoxy‐modified system. Thermogravimetric studies reveal that the thermal stability of the neat epoxy resin was decreased by incorporation of CSE. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
The effects of carbon nanotube (CNT) inclusion on cyclic fatigue behavior and the residual mechanical properties of epoxy composites after different degrees of fatigue have been studied. Tension–tension cyclic fatigue tests were conducted at various load levels (25–50 MPa) to establish the relationship between stress and the number of cycles to failure (SN curves). The residual strength and modulus were measured after loading at 30 MPa for 5000, 15,000, and 25,000 cycles. The incorporation of a small amount of CNTs increased the fatigue life of epoxy in the high‐cycle, low‐stress‐amplitude regime by 1550%. Micrographs indicate the key mechanisms for enhancement in fatigue life such as CNT crack‐bridging and pullout. POLYM. ENG. SCI., 52:1882–1887, 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
Imide formation from -CONH and -COOH functional groups of 2-carboxyphenylmethacrylamide (2-CPM), 4-carboxyphenylmethacrylamide (4-CPM), 4-carboxyphenyl methacrylamide/methylmethacrylate (4-CPM/MMA) and 4-carboxyphenylmethacrylamide/N-phenylmalemide (4-CPM/NPMI) electropolymerized matrices was investigated. It was found that 2-CPM polymers undergo intramolecular imidization and anhydride formation, which result in a small amount of crosslinked network. On the other hand, the thermally cured 4-CPM polymer demonstrates a significant increase in gel fraction. Tg and dynamic storage modulus, owing to crosslinked network formation. Tgs of 4-CPM/MMA and 4-CPM/NPMI composites measured by thermomechanical analysis after thermal heating were increased and were correlated very well with the preheating time. The 4-CPM/MMA composites with a particle crosslinking (Tg increased to 245°C) maintained a higher Izod impact strength than a typical epoxy composite (200 kJ/m2 vs. 100 kJ/m2). Upon heating to promote crosslinking, a lower shear strength (65 MPa) of a 4-CPM/MMA composite increased to a strength of 78 MPa, close to the 80 MPa of an epoxy composite at 67% fiber volume fraction. A lower water absorption of around 1% was associated with the increased crosslinking. The mechanical properties of the 4-CPM/NPMI composites showed a similar trend upon preheating.  相似文献   

15.
In this study, we synthesized poly(methyl methacrylate) (PMMA) epoxy vitrimer composites by doping methyl methacrylate (MMA) and benzoyl peroxide into a curing system of epoxy resin and citric acid. The vitrimer composites were characterized with dynamic mechanical thermal analysis, scanning electron microscopy, and stress‐relaxation and lap‐shear testing. The test results show that with increasing amount of MMA, the existence of PMMA in the epoxy vitrimer matrix in the form of intermiscible, slightly soluble, and phase separation became more evident. When the doping amount of PMMA reached 10–25 wt %, the bonding strength of the PMMA–epoxy vitrimer composites was about two times that of the epoxy vitrimer (from 2.3 to 4.3 MPa). This showed that the self‐healing strength of the vitrimer composites was better than that of the pure vitrimer. When the PMMA in the epoxy matrix was in a slightly soluble form, the linear PMMA improved the mechanical properties of the epoxy vitrimer by physical winding. At the same time, the doping of PMMA promoted the transesterification rate of the epoxy vitrimer and enhanced the bonding strength of the composites without lowering the epoxy vitrimer glass‐transition temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46307.  相似文献   

16.
A novel surface modification method for ultrahigh molecular weight polyethylene (UHMWPE) fibers to improve the adhesion with epoxy matrix was demonstrated. Polyethylene wax grafted maleic anhydride (PEW‐g‐MAH) was deposited on the UHMWPE fibers surface by coating method. The changes of surface chemical composition, crystalline structure, mechanical properties of fiber and composite, wettability, surface topography of fibers and adhesion between fiber and epoxy resin before and after finishing were studied, respectively. The Fourier transform infrared spectroscopy spectra proved that some polar groups (MAH) were introduced onto the fiber surface after finishing. The X‐ray diffraction spectra indicated that crystallinity of the fiber was the same before and after finishing. Tensile testing results showed that mechanical properties of the fiber did not change significantly and the tensile strength of 9 wt % PEW‐g‐MAH treated fiber reinforced composite showed about 10.75% enhancement. The water contact angle of the fibers decreased after finishing. A single‐fiber pull out test was applied to evaluate the adhesion of UHMWPE fibers with the epoxy matrix. After treatment with 9 wt % PEW‐g‐MAH, a pull‐out force of 1.304 MPa which is 53.59% higher than that of pristine UNMWPE fibers was achieved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46555.  相似文献   

17.
A new corn starch adhesive modified by starch‐g‐polyvinyl acetate (starch‐g‐PVAc) and epoxy resin is described in this study. Starch‐g‐PVAc is used as high cohesive energy component to improve the dry shear strength of the starch adhesive. Although the epoxy resin, which can easily crosslink with the oxidized starch, is used as water‐resistant component to improve the wet shear strength. Because there is no chemical reaction happening between polyvinyl acetate and epoxy resin, both the dry shear strength and the wet shear strength of the corn starch adhesive are notably increased. Considering all the related factors, the optimum of the modification is achieved when the dosage of starch‐g‐PVAc and epoxy resin is 70% of the oxidized starch latex with m(Ep): m(starch‐g‐PVAc) = 1:2. That is, the epoxy resin is 23% in mass fraction and starch‐g‐PVAc 47% in mass fraction. The dry shear strength is 4.50 MPa, and the wet shear strength is 2.51 MPa. The modified corn starch has a broad prospect in the application of plywood industry. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
Epoxy resins are increasingly finding applications in the field of structural engineering. A wide variety of epoxy resins are available, and some of them are characterized by a relatively low toughness. One approach to improve epoxy resin toughness includes the addition of either a rigid phase or a rubbery phase. A more recent approach to toughen brittle polymers is through interpenetrating network (IPN) grafting. It has been found that the mechanical properties of polymer materials with an IPN structure are fairly superior to those of ordinary polymers. Therefore, the present work deals with epoxy resin toughening using a polyurethane (PU) prepolymer as modifier via IPN grafting. For this purpose, a PU prepolymer based on hydroxyl-terminated polyester has been synthesized and used as a modifier at different concentrations. First, the PU-based hydroxyl-terminated polyester has been characterized. Next, an IPN (Epoxy–PU) has been prepared and characterized using Fourier transform infrared (FTIR) spectroscopy, thin-layer chromatography (TLC), and scanning electron microscopy (SEM) prior to mechanical testing in terms of impact strength and toughness. In this study, a Desmophen 1200-based PU prepolymer was used as a modifier at different concentrations within the epoxy resin. The results also showed that, further to the IPN formation, the epoxy and the PU prepolymer reacted chemically (via grafting). Compared to virgin resin, the effect on the mechanical properties was minor. The impact strength varies from 3–9 J/m and Kc from 0.9–1.2 MPa m1/2. Furthermore, the incorporation of a chain extender with the PU prepolymer as a modifier into the mixture caused a drastic improvement in toughness. The impact strength increases continuously and reaches a maximum value (seven-fold that of virgin resin) at a modifier critical concentration (40 phr). Kc reaches 2.5 MPa m1/2 compared to 0.9 MPa m1/2 of the virgin resin. Finally, the SEM analysis results suggested that internal cavitation of the modifier particles followed by localized plastics shear yielding is probably the prevailing toughening mechanism for the epoxy resin considered in the present study. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2603–2618, 1998  相似文献   

19.
Incorporation of pre‐reacted monofunctional polyhedral oligomeric silsesquioxane (POSS)–epoxy adducts dramatically improves dispersion of POSS in epoxy–amine networks. The relationship between reaction kinetics and mechanism for formation of POSS–epoxy adducts versus reaction temperature was investigated. Reactivities of epoxy–monoamine functional POSS molecules were determined using in situ reaction monitoring by dynamic dielectric sensing and 29Si NMR spectroscopy. The amine‐functional POSS–epoxy isothermal reaction showed reduced reactivity due to reduced molecular mobility, that is, diffusion limitations. Kinetic parameters were determined by fitting 29Si NMR data to the model of Kamal that was extended to include diffusion. Fitting of this model to experimental data showed very good agreement over the entire conversion range for pre‐reaction between amine‐functionalized POSS and epoxy. An autocatalytic mechanism, the same as that for the neat epoxy–amine systems, was indicated. Gel permeation chromatography, scanning electron microscopy and transmission electron microscopy were used to investigate molecular weight evolution and morphology of final networks cured by 4,4′ diaminodiphenyl sulfone using pre‐reacted POSS–epoxy adducts. POSS aggregate size decreased with increased pre‐reaction temperature; more homogenous POSS dispersion was observed with higher pre‐reaction temperature. Dynamic mechanical analysis demonstrated that Tg of composites decreased slightly compared to that of the neat matrix and there appeared to be little change in microstructural heterogeneity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45994.  相似文献   

20.
In this study, we demonstrated a facile approach for the synthesis of nanocontainers using the encapsulation of a 2-mercaptobenzothiazole (MBT) inhibitor; these nanocontainers were capable of responsively releasing a corrosion inhibitor and of self-healing performances. The anticorrosive performance of the CeO2 nanocontainers was investigated with electrochemical impedance spectroscopy (EIS) measurement in a saline electrolyte via the incorporation of different weight percentages (0.5, 1, and 2 wt %) of synthesized nanocontainer in epoxy (EP) resin. The EIS results show that the loading of 1 wt % CeO2 nanocontainer containing MBT inhibitor in the epoxy (EP) coating [EP/NC MBT–CeO2 (1%)] provided the highest Rcoat, the lowest constant phase element of coating, and the optimum release of MBT at different operating pHs. The highest coating resistance Rcoat values of this coating (7.81 × 107 Ω cm2) were about 12 and 8573 times greater than those considered for EP–CeO2 and EP coatings, respectively. Different releases of the MBT inhibitor were detected at various pHs. We found that the coating operating in acidic media exhibited a better self-healing performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47297.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号