首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 To overcome the restriction of actual boundary element methods (BEMs) to cases where fundamental solutions are known we present here an alternative BEM-approach. It is based on new boundary integral equations (BIE) for the computation of the entries of the standard BEM matrices which are obtained by a spatial Fourier transform of the traditional BIE. In these equations, we only need the transform of the fundamental solution and not the fundamental solution itself. The former is always available as long as the underlying differential operator is linear and has constant coefficients. Non-linear problems can be solved by an iterative linear procedure. First applications for problems of isotropic and anisotropic Kirchhoff or Reissner plates are given. Due to the limited space, more complex examples will be presented in an additional paper. Received 6 November 2000  相似文献   

2.
In this study, an adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D elastostatic problems is suggested. This adaptive refinement procedure is based on the Zienkiewicz and Zhu (ZZ) error estimator for the a posteriori error estimation and an adaptive finite point mesh generator for new point mesh generation. The presentation of the work is divided into two parts. In Part I, concentration will be paid on the stress recovery and the a posteriori error estimation processes for the RKPM. The proposed error estimator is different from most recovery type error estimators suggested previously in such a way that, rather than using the least-squares fitting approach, the recovery stress field is constructed by an extraction function approach. Numerical studies using 2D benchmark boundary value problems indicated that the recovered stress field obtained is more accurate and converges at a higher rate than the RKPM stress field. In Part II of the study, concentration will be shifted to the development of an adaptive refinement algorithm for the RKPM.  相似文献   

3.
 This work provides a preliminary contribution in the context of analytical integrations of strongly and hyper singular kernels in boundary element methods (BEMs) in 3D. It concerns the integral of 1/r 3 over a triangle in R 3, that plays a fundamental role in BEMs in 3D, especially for the Galerkin implementation. Because the existence of the aforementioned integral depends on the position of the source point, all significant instances of the position of the source point will be considered and detailed. For its interest in the context of BEM, the integral is also considered in the more general sense of finite part of Hadamard. Received 6 August 2001  相似文献   

4.
In part I of this investigation, we proved that the standard a posteriori estimates, based only on local computations, may severely underestimate the exact error for the classes of wave-numbers and the types of meshes employed in engineering analyses. We showed that this is due to the fact that the local estimators do not measure the pollution effect inherent to the FE-solutions of Helmholtz' equation with large wavenumber. Here, we construct a posteriori estimates of the pollution error. We demonstrate that these estimates are reliable and can be used to correct the standard a posteriori error estimates in any patch of elements of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
The boundary integral equation method in conjunction with the degenerate kernel, the direct searching technique (singular value decomposition), and the only two-trials technique (2 × 2 matrix eigenvalue problem) are analytically and numerically used to find the degenerate scales, respectively. In the continuous system of boundary integral equation, the degenerate kernel for the 2D Kelvin solution in the polar coordinates is reviewed and the degenerate kernel in the elliptical coordinates is derived. Using the degenerate kernel, an analytical solution of the degenerate scales for the elasticity problem of circular and elliptical cases is obtained and compared with the numerical result. Further, the triangular case and square case were also numerically demonstrated.  相似文献   

6.
 In a previous paper we proposed a mixed least squares method for solving problems in linear elasticity. The solution to the equations of linear elasticity was obtained via minimization of a least squares functional depending on displacements and stresses. The performance of the method was tested numerically for low order elements for classical examples with well known analytical solutions. In this paper we derive a condition for the existence and uniqueness of the solution of the discrete problem for both compressible and incompressible cases, and verify the uniqueness of the solution analytically for two low order piece-wise polynomial FEM spaces. Received: 20 January 2001 / Accepted: 14 June 2002 The authors gratefully acknowledge the financial support provided by NASA George C. Marshall Space Flight Centre under contract number NAS8-38779.  相似文献   

7.
A four‐node, quadrilateral smoothing element is developed based upon a penalized‐discrete‐least‐squares variational formulation. The smoothing methodology recovers C1‐continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five‐node macro‐element configuration consisting of four triangular anisoparametric smoothing elements in a cross‐diagonal pattern. This element pattern enables a convenient closed‐form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge‐wise penalty constraints. The degree‐of‐freedom reduction scheme leads to a very efficient formulation of a four‐node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes a mesh refinement technique for boundary element method in which the number of elements, the size of elements and the element end location are determined iteratively in order to obtain a user specified accuracy. The method uses L1 norm as a measure of error in the density function and a grading function that ensures that error over each element is the same. The use of grading function along with L1 norm makes the mesh refinement technique applicable to Direct and Indirect boundary element method formulation for a variety of boundary element method applications. Numerical problems in elastostatics, fracture mechanics, and bending of plate solved using Direct and Indirect method in which the density functions are approximated by Linear Lagrange, Quadratic Lagrange or Cubic Hermite polynomials validate the effectiveness of the proposed mesh refinement technique. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
 The subject of this paper is the formulation and the implementation of the symmetric Galerkin BEM for three-dimensional linear elastic fracture mechanics problems. A regularized version of the displacement and traction equations in weak form is adopted and the integration techniques utilized for the evaluation of the double surface integrals appearing in the discretized equations are detailed. By using quadratic isoparametric quadrilateral and triangular elements, some example crack problems are solved to assess the efficiency and robustness of the method. Received 6 November 2000  相似文献   

10.
 Like the finite element method (FEM), the symmetric Galerkin boundary element method (SGBEM) can produce symmetric system matrices. While widely developed for two dimensional problems, the 3D-applications of the SGBEM are very rare. This paper deals with the regularization of the singular integrals in the case of 3D elastostatic problems. It is shown that the integration formulas can be extended to curved elements. In contrast to other techniques, the Kelvin fundamental solutions are used with no need to introduce the new kernel functions. The accuracy of the developed integration formulas is verified on a problem with known analytical solution. Received 6 November 2000  相似文献   

11.
 This paper presents a two-dimensional model for identification of the phase change front in a continuous casting process. The transport phenomena encountered in the considered process are solved by Boundary Element Method (BEM). For the known set of external boundary conditions, the whole problem is solved in two subdomains separated by a phase change front whose position is updated during the iteration process. The solution scheme involves the application of a front tracking procedure based on using sensitivity coefficients to find the correct position of the phase change front modelled by Bezier splines. The main features of the developed algorithms were investigated by several numerical tests, the most important results of which are presented in this article. Received 6 November 2000  相似文献   

12.
In this article, a recovery by compatibility in patches (RCP)-based a posteriori error estimator is proposed for the virtual element method (VEM), and it is utilized to drive adaptive mesh refinement processes in two-dimensional elasticity problems. In RCP, recovered stresses are obtained by minimizing the complementary energy of patches of elements over a set of assumed equilibrated stress modes. To this aim, the explicit knowledge of displacements is only needed along the patch boundaries and no knowledge of superconvergent points is required, so making the RCP naturally suitable for the VEM. The a posteriori error estimation is conducted by comparing the stress field of a standard displacement-based VEM solution and the stress field obtained through RCP. The procedure is simple, and it does not require ad hoc modifications for small patches. The capability of this RCP-based error estimator to drive adaptive mesh refinements is successfully demonstrated through various numerical examples.  相似文献   

13.
When using the boundary element method, the accuracy of the numerical solution depends critically on the discretization of the boundary into elements (panels). The distribution of the panels is one of the most important decisions taken when analyzing a problem, but still the vast majority of users employ empirical guidelines to distribute the panels. This paper reviews the various adaptive schemes that have been proposed for boundary elements. Numerical results are obtained for infinite fluid flow problems and free surface problems and are used to assess the reliability and effectiveness of each method.  相似文献   

14.
15.
Methods for a posteriori error estimation for finite element solutions are well established and widely used in engineering practice for linear boundary value problems. In contrast here we are concerned with finite elasticity and error estimation and adaptivity in this context. In the paper a brief outline of continuum theory of finite elasticity is first given. Using the residuals in the equilibrium conditions the discretization error of the finite element solution is estimated both locally and globally. The proposed error estimator is physically interpreted in the energy sense. We then present and discuss the convergence behaviour of the discretization error in uniformly and adaptively refined finite element sequences.  相似文献   

16.
Warping shear stresses in nonuniform torsion by BEM   总被引:2,自引:0,他引:2  
 In this paper a boundary element method is developed for the nonuniform torsion of simply or multiply connected prismatic bars of arbitrary cross section. The bar is subjected to an arbitrarily distributed twisting moment, while its edges are restrained by the most general linear torsional boundary conditions. Since warping is prevented, beside the Saint–Venant torsional shear stresses, the warping normal and shear stresses are also computed. Three boundary value problems with respect to the variable along the beam angle of twist and to the primary and secondary warping functions are formulated and solved employing a BEM approach. Both the warping and the torsion constants using only boundary discretization together with the torsional shear stresses and the warping normal and shear stresses are computed. Numerical results are presented to illustrate the method and demonstrate its efficiency and accuracy. The magnitude of the warping shear stresses due to restrained warping is investigated by numerical examples with great practical interest. Received: 13 November 2001 / Accepted: 2 October 2002  相似文献   

17.
18.
 A general procedure to perform shape design sensitivity analysis for two-dimensional periodic thermal diffusion problems is developed using boundary integral equation formulation. The material derivative concept to describe shape variation is used. The temperature is decomposed into a steady state component and a perturbation component. The adjoint variable method is used by utilizing integral identities for each component. The primal and adjoint systems are solved by boundary element method. The sensitivity results compared with those by finite difference show good accuracy. The shape optimal design problem of a plunger model for the panel of a television bulb, which operates periodically, is solved as an example. Different objectives and amounts of heat flux allowed are studied. Corresponding optimum shapes of the cooling boundary of the plunger are obtained and discussed. Received 15 August 2001 / Accepted 28 February 2002  相似文献   

19.
20.
In References 1 and 2 we showed that the error in the finite-element solution has two parts, the local error and the pollution error, and we studied the effect of the pollution error on the quality of the local error-indicators and the quality of the derivatives recovered by local post-processing. Here we show that it is possible to construct a posteriori estimates of the pollution error in any patch of elements by employing the local error-indicators over the mesh outside the patch. We also give an algorithm for the adaptive control of the pollution error in any patch of elements of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号