共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改进蚁群优化算法的收敛速度,研究了一种基于粗粒度模型的并行蚁群优化算法,该算法将搜索任务划分给q个子群,由这些子群并行地完成搜索,可使搜索速度大幅度提高。实验结果表明,用该算法求解TSP问题,收敛速度比最新的改进算法快百倍以上。 相似文献
2.
蚁群优化算法应用于复杂问题的求解是非常耗时的。文章在MATLAB环境下实现了一个基于GPU+CPU的并行MAX-MIN蚁群系统,并将其应用于旅行商问题的求解。让全部蚂蚁共享一个伪随机数矩阵,一个信息素矩阵,一个禁忌矩阵和一个概率矩阵,并运用了一个全新的基于这些矩阵的随机选择算法—AIR(All-In-Roulette)。文章还介绍了如何使用这些矩阵来构造并行蚁群优化算法,并与相应串行算法进行了比较。计算结果表明新的并行算法比相应串行算法要高效很多。 相似文献
3.
Classification using Ant Programming is a challenging data mining task which demands a great deal of computational resources when handling data sets of high dimensionality. This paper presents a new parallelization approach of an existing multi-objective Ant Programming model for classification, using GPUs and the NVIDIA CUDA programming model. The computational costs of the different steps of the algorithm are evaluated and it is discussed how best to parallelize them. The features of both the CPU parallel and GPU versions of the algorithm are presented. An experimental study is carried out to evaluate the performance and efficiency of the interpreter of the rules, and reports the execution times and speedups regarding variable population size, complexity of the rules mined and dimensionality of the data sets. Experiments measure the original single-threaded and the new multi-threaded CPU and GPU times with different number of GPU devices. The results are reported in terms of the number of Giga GP operations per second of the interpreter (up to 10 billion GPops/s) and the speedup achieved (up to 834× vs CPU, 212× vs 4-threaded CPU). The proposed GPU model is demonstrated to scale efficiently to larger datasets and to multiple GPU devices, which allows the expansion of its applicability to significantly more complicated data sets, previously unmanageable by the original algorithm in reasonable time. 相似文献
4.
本文根据影响并行蚁群算法性能的关键因素,提出了一种自适应的并行蚁群算法.首先提出了基于适应度和基于距离选择的两种不同的信息交流策略,使得各处理机自适应地选择与之进行信息交换的处理机,然后采用自适应的更新策略进行信息素的更新.为了增强该算法的搜索能力,还根据解的多样性给出了自适应地调节处理机之间的信息交流周期的方法.在MPP处理机深腾1800上对TSP问题的实验结果表明了该算法在保证有效的加速比的同时,具有很好的收敛性. 相似文献
5.
针对加入导向性局部搜索(Guided Local Search,GLS)的蚁群算法(Ant Colony Optimization,ACO)容易过早收敛的问题,提出一种带有摄动的导向性蚁群算法(Perturbation Guided Ant Colony Optimization,PGACO),该算法在当前解表现出过早收敛的趋势时,采用摄动(Perturbation)方式干扰解构建过程,使当前解移动到其邻域空间,从而产生一个新的可行解来避免算法过早收敛,提高算法求解的精度。实验结果表明,PGACO能有效地改善过早收敛问题,获得更优的可行解和执行速度,同时具有更强的全局搜索能力,能进一步提高算法的性能。 相似文献
6.
7.
蚁群优化算法的研究和应用已取得了不少重要成果,然而在大规模优化应用中还存在搜索时间长的问题,为此研究了一种基于细粒度模型的并行蚁群算法。实验结果表明,该算法与最新的改进算法相比,搜索速度提高数十倍至数百倍以上。 相似文献
8.
9.
In this article we report on our experience in computing resultants of bivariate polynomials on Graphics Processing Units (GPU). Following the outline of Collins’ modular approach [6], our algorithm starts by mapping the input polynomials to a finite field for sufficiently many primes m. Next, the GPU algorithm evaluates the polynomials at a number of fixed points x∈Zm, and computes a set of univariate resultants for each modular image. Afterwards, the resultant is reconstructed using polynomial interpolation and Chinese remaindering. The GPU returns resultant coefficients in the form of Mixed Radix (MR) digits. Finally, large integer coefficients are recovered from the MR representation on the CPU. All computations performed by the algorithm (except for, partly, Chinese remaindering) are outsourced to the graphics processor thereby minimizing the amount of work to be done on the host machine. The main theoretical contribution of this work is the modification of Collins’ modular algorithm using the methods of matrix algebra to make an efficient realization on the GPU feasible. According to the benchmarks, our algorithm outperforms a CPU-based resultant algorithm from 64-bit Maple 14 by a factor of 100. 相似文献
10.
尹维伟 《电脑编程技巧与维护》2011,(8):26-27,31
分析组播路由算法和蚁群优化算法,并通过仿真实验评价了以蚁群优化为基础的组播路由算法的优化方法。当路由计算的规模较大时,信息中未搜索到的数量能够减少并趋近0,将路由算法的全局搜索能力降低。蚁群算法中,蚂蚁的数量与算法的全局搜索能力呈正相关,但蚂蚁的数量在增加的过程中会影响其收敛速度。通过蚁群优化组播路由算法,能够在规模的限定下,提高算法的搜索能力。 相似文献
11.
蚁群优化算法及其应用 总被引:15,自引:2,他引:15
蚂蚁算法是由意大利学者M.Dorigo等人提出的一种新型的模拟进化算法。该算法首先应用于旅行商问题并获得了极大的成功,其后,又被用于求解指派问题、Job—shop调度问题、图着色问题和网络路由问题等。实践证明,蚂蚁算法是一种鲁棒性强、收敛性好、实用性广的优化算法,但同时也存在一些不足,如收敛速度慢和容易出现停滞现象等。 相似文献
12.
基于离散数字编码的蚁群连续优化算法 总被引:1,自引:0,他引:1
本文提出了一种基于离散编码的蚁群连续优化算法(CACO-DE),用于求解连续优化问题.以往蚁群算法(AC0)的研究,以求解离散优化问题为主,较少涉及连续优化问题.与经典的ACO算法不同,CACO-DE将有限精度的实数转化为一个数字串,数字串的每位取0到9之间的数字,从而实现了用离散编码描述实数的效果.CACO-DE延用了经典ACO算法的框架,并加入了特殊的选择机制、信息素更新方式和局部搜索策略.测试实验结果表明:CA-CO-DE比以往同类算法求解速度更快且精度更高. 相似文献
13.
为了求解工件具有不同尺寸的批处理机调度问题,将蚁群算法调整为工件直接成批的调度算法,并提出了一个新的局部优化算法对蚁群算法进行改进。最后通过仿真实验将本算法与其它算法对本问题的求解进行了比较,表明该算法在求解批调度问题上有较好的性能。 相似文献
14.
15.
16.
17.
计算机网络规模的逐渐扩大使数据传输时的延时、丢包等现象日益明显.为了提高网络数据传输的稳定性,降低网络消耗,研究使用蚁群算法解决计算机网络的路由优化问题.同时,为了提高蚁群算法的性能,提出了状态转移规则和信息素更新规则的改进策略,使蚁群算法的收敛速度得到明显提升.仿真结果表明,上述改进蚁群算法可以在较短时间内计算出路由优化的结果,优化成功率较高,非常适合实际应用. 相似文献
18.
Runtime Analysis of a Simple Ant Colony Optimization Algorithm 总被引:1,自引:0,他引:1
Ant Colony Optimization (ACO) has become quite popular in recent years. In contrast to many successful applications, the theoretical
foundation of this randomized search heuristic is rather weak. Building up such a theory is demanded to understand how these
heuristics work as well as to come up with better algorithms for certain problems. Up to now, only convergence results have
been achieved showing that optimal solutions can be obtained in finite time. We present the first runtime analysis of an ACO
algorithm, which transfers many rigorous results with respect to the runtime of a simple evolutionary algorithm to our algorithm.
Moreover, we examine the choice of the evaporation factor, a crucial parameter in ACO algorithms, in detail. By deriving new
lower bounds on the tails of sums of independent Poisson trials, we determine the effect of the evaporation factor almost
completely and prove a phase transition from exponential to polynomial runtime.
A preliminary version of this paper appeared in the Proceedings of the 17th International Symposium on Algorithms and Computation
(ISAAC 2006), volume 4288 of LNCS, pp. 618–627, Springer.
Financial support for C. Witt by the Deutsche Forschungsgemeinschaft (SFB) in terms of the Collaborative Research Center “Computational
Intelligence” (SFB 531) is gratefully acknowledged. 相似文献
19.
基于并行多种群自适应蚁群算法的聚类分析 总被引:10,自引:0,他引:10
高坚 《计算机工程与应用》2003,39(25):78-79,82
数据聚类是数据挖掘中的一个重要课题。聚类问题可以归结为一个优化问题。蚁群算法作为一种鲁棒性很强的优化算法具有很强的全局优化能力。该文给出了一种并行多种群自适应蚁群算法。该算法采用多种群并行搜索,并在种群中采用基于目标函数值的启发式信息素分配策略和根据目标函数自动调整蚂蚁搜索路径的行为。理论分析和仿真实验表明,该算法是非常有效的。 相似文献
20.
自适应蚁群算法在序列比对中的应用 总被引:9,自引:2,他引:9
序列比对是生物信息学的重要研究工具。蚁群算法是一种新型的模拟进化算法,并被成功地应用于旅行商问题(TSP)等组合优化问题中。该文将蚁群算法应用于序列比对,并提出基于自适应调整信息素的改进算法。仿真结果表明这种新的比对算法是有效的,而它的改进算法的效果更为理想。 相似文献