首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Annealing studies were conducted on bulk La0.7Ca0.3MnO3−δ to determine the sensitivity of its structural and magnetic properties to oxygenation conditions. Standard bulk sintering conditions, thin-film annealing conditions for obtaining good magnetoresistive properties, and a reducing anneal, which corresponded to the onset of phase decomposition, were conducted. The main phase formed was a face-centered (fcc) pseudocubic double-perovskite structure, with cell parameters of a ∼ 2 a p∼ 0.772 nm, where a p is the single-perovskite cubic cell parameter. A minor superstructure—body-centered pseudotetragonal, with lattice parameters of c = 4 a p and a =√2 a p—was observed in samples with (3 −δ) < 3. A maximum of 20% of the superstructure was formed using the most-reducing conditions. The superstructure had a lower critical temperature than the main phase and depressed ferromagnetic order.  相似文献   

2.
The structural parameters of orthorhombic and tetragonal phases (space group P / mmm and P 4/ mmm ) of A-site deficient La0.683(Ti0.95Al0.05)O3 perovskite have been refined by Rietveld analysis through the X-ray powder diffraction patterns measured in the temperature range from 15° to 500°C. With an increase in temperature the unit-cell parameters a , b , and c increased, while the b / a ratio decreased and became unity between 200° and 400°C. No significant changes were observed for atomic coordinates throughout the temperature studied. These results strongly suggest that the phase transition is induced by lattice distortion.  相似文献   

3.
The structure and electrical properties of an A-site-deficient perovskite compound found in the La2/3TiO3-La1/3NbO3 system were investigated. The composition of the perovskite compound seemed to be very close to La0.633(Ti0.90Nb0.10)O3. X-ray diffraction analysis revealed a superstructure with a doubled c -axis parameter, resulting from an ordered arrangement of the A-site cation vacancies. Impedance measurements on the compound showed that La0.633(Ti0.90Nb0.10)O3 had high ionic conductivity at relatively low temperature (<770 K) and increased electronic conduction at high temperature (>770 K). The bulk ionic conductivity was comparable with that of La0.683(Ti0.95Al0.05)O3, which has the highest ionic conductivity among the La-(Ti,Al)-O perovskite compounds.  相似文献   

4.
The heteronuclear LaMn(dhbaen)(OH)(NO3)(H2O)4 complex was synthesized and perovskite-type hexagonal LaMnO3 was obtained by its thermal decomposition at approximately 700°C. The complex and its decomposition products were analyzed using simultaneous thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, Auger electron spectroscopy (AES), transmission electron microscopy (TEM) characterization, and specific surface area measurements. Although XRD analysis did not show the peaks of LaMnO3 for the sample sintered at 600°C, the presence of polycrystalline LaMnO3 together with an amorphous phase was confirmed by TEM-selected area diffraction. Particle sizes of the samples decomposed at 600° and 700°C were 20 and 50 nm, respectively. For the conventional solid-state reaction method, XRD results showed the formation of a LaMnO3 single phase for the samples fired above 1000°C. However, AES showed that the elemental distributions of La, Mn, and O on the surface were not homogeneous even for the sample sintered at 1200°C. The thermal decomposition of the heteronuclear complex at low temperatures allows the synthesis of single-phase hexagonal LaMnO3 powders having nanosized particles, homogeneous and free of intragranular pores, which are suitable for electroceramics applications.  相似文献   

5.
We have found a new phase of La0.05Sr0.95MnO3 with a 30-layer rhombohedral structure by using electron microscopy. The lattice constants were hexagonal axes of a = 0.5444 nm and c = 6.7582 nm. Both weak and strong intensities appeared in selected area diffraction (SAD) patterns. The strong intensities were caused by the periodicity of 15 (Sr,La)O3 layers that had a new stacking sequence of (cchch)3. However, the weak intensities indicated that the 15-layer structure has modulation along the c -direction that is twice as long as that of the structure indicated by the strong intensities. We concluded that the modulation of the 30-layer structure was produced by the introduction of two kinds of oxygen octahedra, Mn3+O6 and Mn4+O6.  相似文献   

6.
The phase equilibria of the La2O3–SrO–CaO–Mn3O4 system in air at 1200°C has been studied. Under these conditions, eight univariant four-phase equilbria were observed. Quaternary phases, as well as liquid phases, were not observed. Perovskite-structure phases LaMnO3, SrMnO3, and CaMnO3 did not form complete solid solutions within the system.  相似文献   

7.
A solid-state reaction process has been developed to synthesize perovskite-type LaCoO3 nanocrystals with grain diameters of 15–40 nm. In the first step of the preparation, ∼5 nm composite hydroxide nanoparticles are synthesized by the solid-state reaction of La(NO3)3· n H2O and Co(NO3)2·6H2O with KOH at ambient temperature. A perovskite-type rhombohedral LaCoO3 phase appears at 550°C, after the hydroxide has been calcined at various temperatures. The phase transformation process is complete at ∼800°C, yielding a single-phase binary oxide. The results indicate that the new process is convenient, inexpensive, and effective for obtaining LaCoO3 nanocrystals with high yield.  相似文献   

8.
The vaporization of the samples of the compositions Ga2O3+ LaGaO3, LaGaO3+ La4Ga2O9, and La4Ga2O9+ La2O3 was investigated using Knudsen effusion mass spectrometry in the temperature range 1494–1937 K. The partial pressures of the gaseous species O2, Ga, GaO, Ga2O, and LaO were determined over the samples investigated. The equilibrium partial pressures were used for the calculation of the thermodynamic activities of the components at 1700 K. Gibbs energies of formation of LaGaO3( s ) and La4Ga2O9( s ) at 1700 K from the component oxides were derived from the thermodynamic activities as −46.4 ± 4.7 and −99.2 ± 7.9 kJ·mol−1, respectively. The results were compared with the literature data obtained using other methods.  相似文献   

9.
Microstructural characterizations on the (1− x )La2/3TiO3· x LaAlO3 (LTLA) system were conducted using transmission electron microscopy. The presence of La2Ti2O7 and La4Ti9O24 phases in pure La2/3TiO3 is confirmed by the electron diffraction pattern. When x = 0.1, the ordering due to the A-site vacancies could be confirmed by the presence of antiphase boundaries (APBs) and return ½(100) superlattice reflection. As x increases, the ordering decreases and finally disappears when x = 0.6. The tilting of oxygen octahedra could be demonstrated by the presence of the ferroelastic domains in the matrix and return ½(111) and return ½(110) superlattice reflections in selected area electron diffraction patterns. In pure LaAlO3, only the antiphase tilting of oxygen octahedra is present due to the presence of return ½(111) superlattice reflection. In the LTLA system of x = 0.1, both the antiphase and in-phase tiltings of the oxygen octahedra are involved; however, in the range of x from 0.3 to 0.9, the antiphase tilting of oxygen octahedra has appeared. The growth of the ferroelastic domains is influenced by the APBs in the matrix.  相似文献   

10.
A thermodynamic model was developed to describe the stability of (Ba,Sr)TiO3 (BST) solid solutions in the Ba–Sr–Ti–K–(EDTA)–H2O (EDTA = ethylenediaminetetraacetic acid) system. Phase diagrams were computed to identify the range of conditions suitable for making phase-pure BST. Hydrothermal experiments were performed to validate the thermodynamic model. The model was found to be more useful when an ideal solid solution was used to estimate the energetics for the BST phase instead of experimental thermodynamic data. In addition, EDTA was found to promote stable conditions for BST formation. When attempting to prepare Ba0.50Sr0.50TiO3 without EDTA, BaTiO3-rich and SrTiO3-rich phases precipitated separately, at 70°–160°C. However, in the presence of EDTA, a phase-pure Ba 0.55Sr0.45TiO3 solid solution was obtained at 90°–120°C. EDTA is effective because it prevents phase heterogeneities from forming and equalizes the adsorption affinity of strontium and barium species.  相似文献   

11.
A flexible chemical solution deposition (CSD) method for the preparation of magnetoresistive La1−x (Ca,Sr)x MnO3thin films based completely on metal propionates is pre-sented.A number of polycrystalline thin films with varying stoichiometries were deposited on different substrate ma-terials at temperatures between 550° and 850°C. The crys-tallization behavior on selected substrates was found to de-pend on the thin film stoichiometry. Magnetoresistivity and magnetization were measured as a function of temperature. For the selected samples, a magnetic Curie temperature TC, a metal–semiconductor transition, and magnetoresistive behavior were observed. These measurements demon-strated that La1−x(Ca,Sr)x MnO3 thin films with properties well known from films deposited by PLD or sputtering can be prepared by a simple, propionate-based CSD method.  相似文献   

12.
(1 – x )(Bi0.8La0.2)(Ga0.05Fe0.95)O3· x PbTiO3 (BLGF-PT) crystalline solutions have been fabricated by solid-state reactions. BLGF-PT has single perovskite phase structure with a rhombohedral–tetragonal (FEr-FEt) morphotropic phase boundary (MPB) at a PT content of x = 0.43. Lanthanum substitution has been found to increase the insulation resistance and decrease the coercive field down to 20 kV/cm, which results in significant improvements in dielectric and piezoelectric properties of BLGF-PT. The dielectric constant, loss tangent, Curie temperature, remnant polarization, piezoelectric d 33 constant, and planar coupling factor of 1760, 0.05, 264°C, 33 μC/cm2, 295 pC/N, and 0.36, respectively, have been achieved for BLFG-PT in the vicinity of the MPB. Compared with conventional Pb(Zr,Ti)O3 (PZT) piezoelectric ceramics, the BLGF-PT is a competitive alternative piezoelectric material with decreased lead content.  相似文献   

13.
Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics of pure perovskite structure were prepared by the two-stage method with the addition of 0–3.0 wt% MnO2 and their piezoelectric properties were investigated systematically. The MnO2 addition influences in a pronounced way both the crystal structure and the microstructure of the materials. The materials are transformed from the tetragonal to the rhombohedral structure, and the grain size is enhanced when manganese cations are added. The distortion of crystal structure for samples with MnO2 addition can be explained by the Jahn–Teller effect. The values of electromechanical coupling factor ( k p) and dielectric loss (tan δ) are optimized for 0.5-wt%-MnO2-doped samples ( k p= 0.60, tan δ= 0.2%) and the mechanical quality factor ( Q m) is maximized for 1.0-wt%-MnO2-doped samples ( Q m= 1041), which suggests that oxygen vacancies formed by substituting Mn3+ and Mn2+ ions for B-site ions (e.g., Ti4+ and Zr4+ ions) in the perovskite structure partially inhibited polarization reversal in the ferroelectrics. The ceramics with 0.50–1.0 wt% MnO2 addition show great promise as practical materials for piezoelectric applications.  相似文献   

14.
A bulk ceramic sample La0.67Sr0.33Fe0.07Mn0.93O3 (LSFMO) with a rhombohedral structure has been prepared from a coprecipitated carbonate precursor in this study. Ferromagnetism and a negative, isotropic magnetoresistance (MR) as large as 11% have been observed in a ceramic sample of LSFMO. There are two resistivity transition peaks on the resistivity versus temperature curves. The resistivity peak and MR have been related to the ferromagnetic state in LSFMO.  相似文献   

15.
The sintering and electrical characteristics of La-modified Na1/2Bi1/2TiO3 (NBT) was investigated from a defect structure viewpoint. To reveal the role of cation vacancies, two series of ceramics, with different cation vacancies, were processed to compensate the excess positive charge of lanthanum ions. In a region of complete solid solution, the grain size of NBLT-B {[(Na0.5Bi0.5)1− x La x ]Ti1−0.25 x O3} was smaller than that of NBLT-A {[(Na0.5Bi0.5)1−1.5 x La x ]TiO3} and densification was enhanced more effectively in NBLT-B. With the aid of thermoelectric power, electric conductivity, and electrotransport measurements, it was found that different sintering behaviors between NBLT-A and NBLT-B specimens were related to the change in the type of cation vacancies present and that lanthanum ion–cation vacancy pairs played an important role in reducing the grain growth and enhancing the densification process.  相似文献   

16.
The alternating-current electrical properties of polycrystalline CaMnO3 were investigated by alternating current complex-impedance analysis, and the dielectric properties were analyzed over the temperature and frequency ranges of 10 to 130 K and 20 Hz to 1 MHz, respectively. Direct-current conductivity and the Seebeck coefficient as a function of temperature also were analyzed. Below 120 K, a Debye-type dielectric relaxation peak was observed. Experimental results implied that the number of charge carriers, which were generated by Mn3+, were not sufficient to stabilize small polarons, although it induced lattice distortion by the Jahn—Teller effect. Therefore, the thermal motion of Mn3+ between potential minimums produced by lattice distortion in the orthorhombic structure were believed to be the source of dielectric relaxation. The temperature dependence of conductivity of the grain interior (σgi) below 120 K was believed to be due to variable range-hopping conduction, where σgi∼ exp(− T −1/4).  相似文献   

17.
Pieces of saw-cut La0.85Sr0.15MnO3 were joined at 1150° and 1250°C under a compressive stress. The strains to form the joints were ∼0.1. Joints formed by plastic deformation were examined using scanning electron microscopy, and they were indistinguishable from the bulk. The room-temperature direct-current resistivity of the joined pieces was identical to that measured in the bulk material. This indicated that a sound, electrically conducting joint could be formed using plastic deformation (grain-boundary sliding) with little surface preparation.  相似文献   

18.
The compositional dependence of microwave dielectric properties has been investigated in the (1 − x )(Na1/2Nd1/2)TiO3− x Nd(Mg1/2Ti1/2)O3 (NNT-NMT) system. The addition of NMT results in significant improvement in the quality factor and the temperature coefficient of frequency, but gradually decreases the dielectric constant from ∼100 for pure NNT to ∼25 for pure NMT. The single perovskite phase is observed with various { hkl } superlattice reflections over the entire compositional range. The increasing tendency of peak splitting with increasing x at some perovskite reflections strongly suggests that the crystal structure of the system changes to lower symmetry structures. This is confirmed using infrared reflectivity spectra. The superlattice reflections related to structural deviation become more predominant as the composition reaches pure NMT. Particularly, {111} superlattice reflections are believed to be associated with the 1:1 cation ordering and responsible for the observed abrupt increase in quality factor at x > 0.7.  相似文献   

19.
The microwave dielectric properties and crystal structure of Ba(Zn1/3Ta2/3)O3– (Sr,Ba)(Ga1/2Ta1/2)O3 ceramics were investigated in the present study. The Q value of Ba(Zn1/3Ta2/3)O3 was improved by adding 5 mol% Sr(Ga1/2Ta1/2)O3. The maximum Q value of Q × f = 162000 GHz was obtained at 0.95Ba(Zn1/3Ta2/3)O3. 0.05Sr(Ga1/2Ta1/2)O3. For this composition, a lattice super structure caused by hexagonal ordering was observed. A further improvement in the Q value was attained when some Sr was replaced with Ba, and 0.95Ba(Zn1/3Ta2/3)O3· 0.05(Sr0.25Ba0.75)(Ga1/2Ta1/2)O3 exhibited a maximum Q value such that Q × f = 210000 GHz. Despite the increased Q value with the replacement of Sr by Ba, the c/a value, which indicates the degree of lattice distortion, remained constant near 3/2. The Q value thus improved without lattice distortion in the system Ba(Zn1/3Ta2/3)O3-(Sr,Ba)(Ga1/2Ta1/2)O3, whereas the improvement of Q value increased with lattice distortion in the solid solution system with Ba(Zn1/3Ta2/3)O3 as an end member.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号