首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Disturbances of events associated with intracellular signaling pathways have been suspected of involvement in the development or progression of affective disorders. Often, heterotrimeric G proteins are located at the beginning of these pathways as modulators of extracellular messages. For this reason, messenger RNA expression of three G protein alpha-subunits and of phosphatidylinositol-3 kinase (PI-3 K) regulatory subunit p85 was examined in granulocytes from patients with bipolar or unipolar affective disorder and compared to healthy controls. Messenger RNA expression of the G protein subunit alpha(q) and of p85 was identical in unipolar and bipolar patients and in controls. Furthermore, mRNAs of G protein subunits alpha(s) and alpha(i2) were not different in unipolar patients as compared to healthy controls. Alpha(s) mRNA, however, was markedly increased in bipolar patients. This increase was observed in lithium-treated (more than 12 months) and in unmedicated patients. Elevated levels of alpha(i2) mRNA in unmedicated bipolar patients did not reach statistical significance, whereas mRNA in bipolar patients receiving lithium was significantly above controls. Finally, long-term medication of unipolar patients with lithium had no influence on alpha(i2) mRNA levels. The data reveal elevated mRNA levels of G alpha(s) as a robust feature of bipolar affective disorder. Moreover, despite responsiveness of alpha(i2) gene expression to cAMP-related events, no substantial upregulation of alpha(i2) mRNA was observed in bipolar patients. The lack of alpha(i2) mRNA upregulation, hence, could be an additional abnormality in these patients. Even though lithium was able to reinstate this upregulation, there was no feedback downregulation of alpha(s). This strongly supports the notion of major disturbances of the cAMP signaling system in bipolar illness.  相似文献   

2.
Culture of isolated rat islets at either 5.5 or 11 mM glucose for up to 6 days was associated with significant time-dependent increases in glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity of islet homogenates compared with freshly isolated islet G3PD activity. In addition, after 6 days of culture of islets at 11 mM glucose, there was a significant increase in G3PD activity compared with the enzyme activity of islets cultured at 5.5 mM glucose. Culture of islets at 5.5 mM glucose for 2 days in the presence of forskolin, 3-isobutylmethylxanthine (IBMX), and 8-bromo-cyclic AMP also significantly increased G3PD activity compared with control islets, although there was no change in enzyme activity after only 1 day of culture with forskolin. Treatment with forskolin was associated with an increase in the Vmax of G3PD, but no change was observed in the apparent K(m) with NAD. IBMX and 8-bromo-cyclic AMP also increased G3PD activity in islets cultured at 11 mM glucose for 2 days. 8-Bromo-cyclic AMP did not affect or inhibit G3PD activity when added directly to islet homogenates. Islets cultured with 8-bromo-cyclic GMP for 2 days at 5.5 or 11 mM glucose did not show changes in G3PD activity. Increases in G3PD activity did not correlate with significant changes in islet glucose utilization. Thus, G3PD activity is modulated by the duration of glucose stimulation in cultured islets, and cyclic AMP may mediate changes in G3PD activity in islet cells.  相似文献   

3.
The possible participation of cyclic AMP in the stress-induced synthesis of two small stress proteins, hsp27 and alpha B-crystallin, in C6 rat glioma cells was examined by specific immunoassays, western blot analysis, and northern blot analysis. When C6 cells were exposed to arsenite (50-100 microM for 1 h) or heat (42 degrees C for 30 min), expression of hsp27 and alpha B-crystallin was stimulated, with levels of the two proteins reaching a maximum after 10-16 h of culture. Induction of hsp27 was markedly enhanced when cells were exposed to arsenite in the presence of isoproterenol (20 microM) or epinephrine (20 microM) but not in the presence of phenylephrine. The stimulatory effects of isoproterenol and epinephrine were blocked completely by propranolol, an antagonist of beta-adrenergic receptors. Cholera toxin (2 micrograms/ml), forskolin (20 microM), and dibutyryl cyclic AMP (2.5 mM), all of which are known to increase intracellular levels of cyclic AMP, also stimulated the arsenite- or heat-induced accumulation of hsp27. Treatment of cells with each of these modulators alone did not result in the induction of hsp27. The level of hsp70 in C6 cells, as estimated by western blot analysis, was also enhanced by arsenite or heat stress. However, induction of hsp70 by stress was barely stimulated by isoproterenol. By contrast, induction of alpha B-crystallin by heat or arsenite stress was suppressed when isoproterenol, cholera toxin, forskolin, or dibutyryl cyclic AMP was present during the stress period. Northern blot analysis of the expression of mRNAs for hsp70, hsp27, and alpha B-crystallin showed that the modulation of the stress-induced accumulation of the three hsps by the various agents was regulated at the level of the corresponding mRNA. These results indicate that stress responses of hsp70, hsp27, and alpha B-crystallin in C6 rat glioma cells are regulated differently and, moreover, that when the level of cyclic AMP increases in cells, the response to stress of hsp27 is stimulated but that of alpha B-crystallin is suppressed.  相似文献   

4.
1. Rat cultured aortic vascular smooth muscle cells (VSMC) express both cyclic GMP-inhibited cyclic AMP phosphodiesterase (PDE3) and Ro 20-1724-inhibited cyclic AMP phosphodiesterase (PDE4) activities. By utilizing either cilostamide, a PDE3-selective inhibitor, or Ro 20-1724, a PDE4-selective inhibitor, PDE3 and PDE4 activities were shown to account for 15% and 55% of total VSMC cyclic AMP phosphodiesterase (PDE) activity. 2. Treatment of VSMC with either forskolin or 8-bromo-cyclic AMP caused significant concentration- and time-dependent increases in total cellular cyclic AMP PDE activity. Using cilostamide or Ro 20-1724, we demonstrated that both PDE3 and PDE4 activities were increased following forskolin or 8-bromo-cyclic AMP treatment, with a relatively larger effect observed on PDE3 activity. The increase in cyclic AMP PDE activity induced by forskolin or 8-bromo-cyclic AMP was inhibited by actinomycin D or cycloheximide, demonstrating that new mRNA synthesis and protein synthesis were required. An analogue of forskolin which does not activate adenylyl cyclase (1,9-dideoxyforskolin) or an analogue of cyclic GMP (8-bromo-cyclic GMP) did not affect total cyclic AMP PDE activity. 3. Incubation of VSMC with 8-bromo-cyclic AMP for 16 h caused a marked rightward shift in the concentration-response curves for both isoprenaline- and forskolin-mediated activation of adenylyl cyclase. A role for up-regulated cyclic AMP PDE activity in this reduced potency is supported by our observation that cyclic AMP PDE inhibitors (IBMX, cilostamide or Ro 20-1724) partially normalized the effects of isoprenaline or forskolin in treated cells to those in untreated cells. 4. We conclude that VSMC cyclic AMP PDE activity is increased following long-term elevation of cyclic AMP and that increases in PDE3 and PDE4 activities account for more than 70% of this effect. Furthermore, we conclude that increases in cyclic AMP PDE activity contribute to the reduced potency of isoprenaline or forskolin in treated VSMC. These results have implications for long-term use of cyclic AMP PDE inhibitors as therapeutic agents.  相似文献   

5.
6.
7.
BACKGROUND AND PURPOSE: During thrombosis, alpha-thrombin becomes sequestered by fibrin and the subendothelial basement membrane, and it is available to interact with the vasculature over prolonged periods. In this study, we investigated the long-term effect of alpha-thrombin on G alpha i3 and G alpha s levels in human vascular endothelial cells (EC). Because obesity is associated with changes in receptor signaling in many animal models, we also explored the influence of this clinical risk factor. METHODS: Primary cultures of human EC were exposed to alpha-thrombin for 16 hours, and immunologically detectable G alpha i3 and G alpha s levels were measured. RESULTS: alpha-Thrombin (100 nmol/L) increased G alpha i3 levels in EC derived from the cerebral microvasculature and superficial temporal artery (4.2 +/- 1.2-fold and 2.8 +/- 0.32-fold, respectively) but had no significant effect on EC derived from omental artery (P > .6) or from the superficial temporal artery of obese (body mass index > or = 28 kg/m2) patients (P > .4). The expression of G alpha s was unchanged in all cell types (P > or = .1). Two other circulating peptides, vasoactive intestinal peptide and endothelin-1, failed to alter the expression of either G protein in EC from the cerebral microvasculature, further demonstrating the specificity of the alpha-thrombin effect. However, thrombin receptor activating protein-14 mimicked the alpha-thrombin response and increased G alpha i3 in EC derived from the cerebral microvasculature and superficial temporal artery. CONCLUSIONS: We conclude that alpha-thrombin increases G alpha i3 expression in some EC through activation of its tethered liganded receptor. Obesity appears to suppress this action of alpha-thrombin.  相似文献   

8.
It has been reported that expression of the active mutant of heterotrimeric GTP-binding protein alpha subunit G alpha i2 transforms Rat-1 cells. However, the G alpha i2-mediated mitogenic signaling pathways remain to be elucidated. Here, we demonstrate that inducible expression of the active mutant of G alpha i2 (G alpha i2(Q205L)) activates Ras and c-Jun N-terminal kinase (JNK) in addition to extracellular signal-regulated kinase (ERK) in Rat-1 cells. Our findings suggest that Ras may play a critical role in the G alpha i2-induced transformation and G alpha i2 can transduce signals from the Gi-coupled receptor to JNK and ERK in certain types of mammalian cells.  相似文献   

9.
Bombesin stimulation of inositol 1,4,5-trisphosphate (Ins P3) formation in rat sonicated pancreatic acinar cells was inhibited by an antibody directed against the pertussis toxin (PTX)-sensitive GTP-binding G alpha i3 protein but not by an anti-G alpha q-11 antibody. After solubilization and gel filtration, [125I-Tyr4]bombesin binding sites were recovered in a peak of protein of 67 approximately 90 kDa with a maximal enrichment corresponding to a molecular mass of 83-kDa. Results obtained from the non-hydrolysable GTP analog guanosine-5'-[gamma-thio]triphosphate (GTP gamma S) binding, PTX-stimulated ADP-ribosylation and immunoblotting showed that the 83-kDa fraction contained the G alpha i3 protein but not the G alpha q-11 protein. Furthermore, GTP gamma S increased the bombesin binding dissociation constant (KD) from 0.32 to 0.60 nM, while the anti-G alpha i3 antibody decreased the maximal binding capacity (Bmax) from 50 to 25 fmol/mg protein without affecting the KD. Mixing solubilized bombesin binding sites with a phospholipase C (PLC) preparation from rat pancreas reconstituted a bombesin-stimulated PLC activity which was markedly inhibited by the anti-G alpha i3 antibody but unaffected by the anti-G alpha q-11 antibody. In addition, this stimulation was inhibited by an anti-PLC beta 1 antibody. This result supports the involvement of the PLC beta 1 isoform in bombesin receptor activation.  相似文献   

10.
The effects of cAMP on the oxytocin-stimulated increase in phosphatidylinositide turnover and the possible pathways involved were investigated in a human myometrial cell line (PHM1-41) and in COS-M6 cells overexpressing the oxytocin receptor. Preincubation with chlorophenylthio-cAMP (CPT-cAMP), forskolin, or relaxin inhibited oxytocin-stimulated phosphatidylinositide turnover in PHM1-41 cells, and the inhibition was reversed by H-89, a relatively specific protein kinase A inhibitor. Both CPT-cAMP and transiently expressed protein kinase A catalytic subunit inhibited stimulation by oxytocin and carbachol of [3H]inositol 1,3,4-trisphosphate formation in COS-M6 cells expressing oxytocin or muscarinic M1 receptors, respectively. CPT-cAMP also inhibited phosphatidylinositide turnover stimulation by endothelin-1 in PHM1-41 cells, further demonstrating the generality of the cAMP-inhibitory mechanism. Since G betagamma activation of phospholipase Cbeta2 (PLCbeta2) is a suggested target of protein kinase A, the possibility that the oxytocin receptor couples to PLCbeta2 via G alpha(i)G betagamma activation was explored. Western blot analysis of PHM1-41 cells and COS-M6 cells detected PLCbeta1 and PLCbeta3, but not PLCbeta2. In PHM1-41 cells, pertussis toxin reduced the oxytocin-stimulated increase in [3H]inositol 1,3,4-trisphosphate by 53%, and this was reversed completely by H-89. Thus, the inhibitory effect of pertussis toxin may result from an indirect effect of cAMP elevation. These data suggest that receptor/G alpha(q)-coupled stimulation of PLCbeta1 or PLCbeta3 can be inhibited by cAMP through a phosphorylation mechanism involving protein kinase A that does not involve PLCbeta2. In smooth muscle, this mechanism could constitute potentially important cross-talk between pathways regulating contraction and relaxation.  相似文献   

11.
12.
The brain has abundant nuclear T3-binding sites and contains messenger RNAs (mRNAs) encoding multiple thyroid hormone receptor (TR) isoforms; the cellular distribution of these different TR isoforms is unknown. To determine whether the TR isoforms are differentially expressed in neuronal and astroglial cells, we examined the relative abundance of the mRNAs encoding TR alpha 1, c-erbA alpha 2, and TR beta 1 in primary cultures of fetal rat brain and in several cell lines of neural and glial origin. Additionally, the TR isoform polypeptides were identified by immunocytochemistry using isoform-specific antibodies. Northern blot analysis showed that fetal brain cell cultures contain mRNAs encoding the T3-binding isoforms TR alpha 1 and TR beta 1 as well as the mRNA encoding the non-T3-binding c-erbA alpha 2. c-erbA alpha 2 mRNA was most abundant, comprising more than 85% of the TR mRNAs in the primary cultures. Neuronal enrichment by antimitotic selection increased TR beta 1 mRNA approximately 3-fold, decreased c-erbA alpha 2 mRNA 70%, and had little or no effect on TR alpha 1 mRNA. Neuronal depletion resulted in the complete loss of TR beta 1 mRNA without changing c-erb alpha 2 or TR alpha 1 mRNA levels. Primary cultures of rat astrocytes, the astrocytoma cell line C6, and the pheochromocytoma cell line PC12 contained only the c-erbA alpha 2 mRNA. Immunocytochemistry using isoform-specific anti-sera revealed that TR beta 1 was exclusively localized to neuronal nuclei, and c-erbA alpha 2 was only found in the nuclei of astrocytes. These results show that TR beta 1 is localized to the nuclei of neuronal cells, and that c-erbA alpha 2 is restricted to the nuclei of astrocytes.  相似文献   

13.
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)-1alpha expression. Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration-dependent manner (1 nM-100 microM), MIP-1alpha release induced by bacterial lipopolysaccharide (LPS 10 ng ml(-1) LPS). The effect of NA was reversed by the selective beta-adrenoceptor antagonist propranolol (10 microM), but not by the alpha-adrenoceptor antagonist phentolamine (10 microM). In the concentration range of 10 nM-10 microM, isoproterenol, a beta-adrenoceptor agonist, but not phenylephrine (a selective alpha1-adrenoceptor agonist) or UK-14304 (a selective alpha2-adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP-1alpha production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1 - 10 microM), or by prostaglandin E2, (10 nM-10 microM) decreased MIP-1alpha release, suggesting that increased cyclic AMP may contribute to the suppression of MIP-1alpha release by beta-adrenoceptor stimulation. Northern blot analysis demonstrated that NA (100 nM-10 microM), Ad, isoproterenol, as well as rolipram (100 nM-10 microM) decreased LPS-induced MIP-1alpha mRNA accumulation. NA and Ad (1-100 microM) also decreased MIP-1alpha production in thioglycollate-elicited murine peritoneal macrophages. Pretreatment of mice with either isoproterenol (10 mg kg(-1), i.p.) or rolipram (25 mg kg(-1), i.p.) decreased LPS-induced plasma levels of MIP-1alpha, while propranolol (10 mg kg(-1), i.p.) augmented the production of this chemokine, confirming the role of a beta-adrenoceptor mediated endogenous catecholamine action in the regulation of MIP-1alpha production in vivo. Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP-1alpha expression in inflammation.  相似文献   

14.
Activation of glial cells and the consequent release of cytokines, proteins, and other intercellular signaling molecules is a well-recognized phenomenon in brain injury and neurodegenerative disease. We and others have previously described an inducible prostaglandin G/H synthase, known as PGHS-2 or cyclooxygenase-2, that is up-regulated in many cell systems by cytokines and growth factors and down-regulated by glucocorticoid hormones. In cultured mouse astrocytes we observed increased production of prostaglandin E2 (PGE2) after stimulation with either interleukin-1 beta (IL-1 beta) or the protein kinase C activator phorbol 12-myristate 13-acetate (TPA). This increase in PGE2 content was blocked by pretreatment with dexamethasone and correlated with increases in cyclooxygenase activity measured at 4 h. Northern blots revealed concomitant increases in PGHS-2 mRNA levels that peaked at 2 h and were dependent on the dosage of IL-1 beta. Dexamethasone inhibited this induction of PGHS-2 mRNA by IL-1 beta. TPA, basic fibroblast growth factor, and the proinflammatory factors tumor necrosis factor alpha and lipopolysaccharide, but not interleukin-6, also stimulated PGHS-2 mRNA expression. Relative to IL-1 beta, the greater increases in PGE2 production and cyclooxygenase activity caused by TPA correlated with a greater induction of PGHS-2 mRNA. Furthermore NS-398, a specific inhibitor of cyclooxygenase-2, blocked > 80% of the cyclooxygenase activity in TPA-treated astrocytes. These findings indicate that increased expression of PGHS-2 contributes to prostaglandin production in cultured astrocytes exposed to cytokines and other factors.  相似文献   

15.
The metabotropic glutamate receptor (mGluR) agonist 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD) potentiated the accumulation of cyclic AMP induced by either beta-adrenergic receptor stimulation (isoproterenol) or direct activation of adenylyl cyclase (AC) with forskolin in rat cerebral cortical astrocytes grown in a defined medium. In contrast, ACPD inhibits the cyclic AMP response in astrocytes cultured in a serum-containing medium. Pharmacological characterization indicated that a group I mGluR, of which only mGluR5 is detectable in these cells, is involved in the potentiation of cyclic AMP accumulation. Potentiation was elicited by mGluR I agonists [e.g., (R,S)-3,5-dihydroxyphenylglycine (DHPG)], but not by mGluR II or III agonists; it was pertussis toxin resistant and abolished by procedures suppressing mGluR5 function (phorbol ester pretreatment or DHPG-induced receptor down-regulation). Nevertheless, it appears that products generated through the mGluR5 transduction pathway, such as elevated [Ca2+]i or activated protein kinase C (PKC), are not involved in the potentiation as it was not influenced by either the intracellular calcium chelator BAPTA-AM or the PKC inhibitor Ro 31-8220. An inhibitor of phospholipase C, U-73122, markedly attenuated mGluR5-activated phosphoinositide hydrolysis but did not significantly affect the DHPG potentiation of the cyclic AMP response. A mechanism is proposed in which the potentiating effect on AC could be mediated by free betagamma complex that is liberated after the agonist-bound mGluR5 interacts with its coupled G protein.  相似文献   

16.
The RGS proteins are a recently discovered family of G protein regulators that have been shown to act as GTPase-activating proteins (GAPs) on the G(alpha i) and G(alpha q) subfamilies of the heterotrimeric G proteins. Here, we demonstrate that RGS7 is a potent GAP in vitro on G(alpha i1), and G(alpha o) heterotrimeric proteins and that RGS7 acts to down-regulate G(alpha q)-mediated calcium mobilization in a whole-cell assay system using a transient expression protocol. This RGS protein and RGS4 are reported to be expressed predominantly in brain, and in situ hybridization studies have revealed similarities in the regional distribution of RGS and G(alpha q) mRNA expression. Our findings provide further evidence to support a functional role for RGS4 and RGS7 in G(alpha q)-mediated signaling in the CNS.  相似文献   

17.
The mechanism by which interleukin-1 (IL-1) and transforming growth factor alpha (TGF-alpha) regulate prostaglandin synthesis has been examined in the clonal mouse osteoblastic cell line MC3T3-E1. Cells were grown in DMEM containing 10% fetal calf serum. Prostaglandin E2 (PGE2) production was determined by radioimmunoassay or by prelabeling cells with [3H]arachidonic acid, followed by high-performance liquid chromatography (HPLC) analysis of the labeled products released into the medium. Prostaglandin G/H synthase (PGHS) mRNAs were quantified by northern blot analysis using [32P]labeled cDNA probes. By HPLC, PGE2 was the major prostanoid produced under basal or stimulated conditions. No release of thromboxane or 6-keto-PGF1 alpha into the medium was detected. PGE2 production was stimulated approximately 7- to 14-fold by IL-1 (1 ng/ml) and 3- to 8-fold by TGF-alpha (30 ng/ml) after 24 h. In combination, however, IL-1 and TGF-alpha caused a synergistic 37- to 71-fold increase in PGE2 accumulation. PGHS-1 mRNA levels were maximally increased approximately 2- to 3-fold by IL-1 and 1.5 to 2.5-fold by TGF-alpha after 24 h; the combination of IL-1 and TGF-alpha produced only an additive 3- to 6-fold increase. Western blotting revealed a corresponding 3-fold increase in immunoreactive PGHS-1 protein in response to combined IL-1 and TGF-alpha. PGHS-2 mRNA was increased 1.4-fold by TGF-alpha at 1 h, and the combination of IL-1 and TGF-alpha caused a 1.7-fold increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have studied the expression of G protein subtypes and the role of G protein-dependent signaling in two subclones of RED-1 cells, an erythropoetin(Epo)-sensitive, murine erythroleukemia cell line. Clone 6C8 showed terminal erythroid differentiation in response to a combined treatment with Epo and dimethylsulfoxide. Clone G3 was resistant to these inducers, but responded to Epo with enhanced proliferation. We measured G protein alpha subunit levels by toxin-catalyzed adenosine diphosphate (ADP)-ribosylation with [32P]-nicotinamide adenine dinucleotide (NAD) and by semiquantitative immunoblotting with specific antisera. Native RED-1 cells expressed G alpha i2, alpha i3, alpha s, and alpha q/11, but not alpha i1 and alpha o. Terminal differentiation was associated with a selective loss (approximately 80%) of G alpha i3 and an increase in a truncated cytosolic form of G alpha i2, while the membrane levels of alpha i2, alpha q/11, and alpha s did not change significantly. Treatment of G3 cells with the inducers was without effect on G protein abundance. However, except for alpha s, G3 cells contained significantly higher levels of the different G protein alpha subunits tested. Stimulation of G protein-coupled receptors by thrombin and ADP caused a pertussis toxin (PTX)-inhibitable transient increase in intracellular Ca2+ that was markedly reduced in differentiated cells. In G3 cells, but not in 6C8 cells, thrombin also caused a PTX-sensitive inhibition of isoprenaline-stimulated cyclic 3',5'-adenosine monophosphate (cAMP) formation. Our results show that specific alterations in G protein expression and function are associated with erythroid differentiation of erythroleukemia cells but do not prove a causal relationship. The loss of G alpha i3 may affect cellular responses that are mediated via P2T purine or thrombin receptors.  相似文献   

19.
The possibility that progesterone or estradiol may regulate expression of G protein in the rat myometrium during the course of pregnancy has been investigated using 1) immunoblot analysis of Gi2 alpha, Gi3 alpha, and Gq alpha subunits and 2) hybridization blot analysis of subunit mRNA. Eighteen hours after administration, estradiol had significantly increased the levels of both Gi2 alpha subunit and Gi2 alpha mRNA (by 40% and 32%, respectively). In control pregnant rats, we observed similar changes at the end of pregnancy, when myometrial concentrations of estradiol had increased, i.e., a 41% increase in immunoreactive Gi2 alpha subunit that correlated with a parallel 45% increase in mRNA levels. In contrast, levels of immunoreactive Gi3 alpha subunit and mRNA, which decreased with advancing gestation, were not influenced by estradiol or progesterone administration. Progesterone administration resulted 30 h later in a significantly decreased level of Gq alpha immunoreactivity (32%) and Gq alpha mRNA (30%). In control rats, Gq alpha protein and mRNA were also significantly lower at midpregnancy under progesterone dominance vs. term. At this stage, a twofold increase in Gq alpha subunit correlated with a 40% increase in mRNA levels. These results demonstrate that myometrial Gi2 alpha and Gq alpha subunits are physiological targets for estradiol and progesterone, respectively, in vivo. Alterations of these G protein levels are discussed in relation to their mediating effects on adenylyl cyclase activity or the phospholipase C pathway during the course of pregnancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号