首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.  相似文献   

2.
Gated detection with intensified detectors, e.g., ICCDs, is today the accepted approach for detection of plasma emission in laser-induced breakdown spectroscopy (LIBS). However, these systems are more cost-intensive and less robust than nonintensified CCDs. The objective of this paper is to compare, both theoretically and experimentally, the performance of an intensified (ICCD) and nonintensified (CCD) detectors for detection of plasma emission in LIBS. The CCD is used in combination with a mechanical chopper, which blocks the early continuum radiation from the plasma. The detectors are attached sequentially to an echelle spectrometer under the same experimental conditions. The laser plasma is induced on a series of steel samples under atmospheric conditions. Our results indicate that there is no substantial difference in the performance of the CCD and ICCD. Signal-to-noise ratios and limits of detection achieved with the CCD for Si, Ni, Cr, Mo, Cu, and V in steel are comparable or even better than those obtained with the ICCD. This result is further confirmed by simulation of the plasma emission signal and the corresponding response of the detectors in the limit of quantum (photon) noise.  相似文献   

3.
The detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy (LIBS) is investigated using aerosolized Bacillus spores. Spores of Bacillus atrophaeous, Bacillus pumilus, and Bacillus stearothemophilus were introduced into an aerosol flow stream in a prescribed manner such that single-particle LIBS detection was realized. Bacillus spores were successfully detected based on the presence of the 393.4- and 396.9-nm calcium atomic emission lines. Statistical analyses based on the aerosol number density, the LIBS-based spore sampling frequency, and the distribution of the resulting calcium mass loadings support the conclusion of individual spore detection within single-shot laser-induced plasmas. The average mass loadings were in the range of 2-3 fg of calcium/Bacillus spore, which corresponds to a calcium mass percentage of approximately 0.5%. While individual spores were detected based on calcium emission, the resulting Bacillus spectra were free from CN emission bands, which has implications for the detection of elemental carbon, and LIBS-based detection of single spores based on the presence of magnesium or sodium atomic emission was unsuccessful. Based on the current instrumental setup and analyses, real-time LIBS-based detection and identification of single Bacillus spores in ambient (i.e., real life) conditions appears unfeasible.  相似文献   

4.
A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer to acquire high-resolution measurements in laser-induced breakdown spectroscopy (LIBS). The spectrometer was built using an inexpensive etalon coupled to a standard 0.5 m imaging spectrometer. The Hg emission doublet at 313.2 nm was used to evaluate instrument performance because it has a splitting of 29 pm. The 313.2 nm doublet was chosen due to the similar splitting seen in isotope splitting from uranium at 424.437 nm, which is 25 pm. The Hg doublet was easily resolved from a continuous-source Hg lamp with a 2 s acquisition. The doublet was also resolved in LIBS spectra of cinnabar (HgS) from the accumulation of 600 laser shots at rate of 10 Hz, or 1 min, under a helium atmosphere. In addition to the observed splitting of the 313.2 nm Hg doublet, the FWHM of the 313.1844 nm line from the doublet is reported at varying helium atmospheric pressures. The high performance, low cost, and compact footprint make this system highly competitive with 2 m double-pass Czerny-Turner spectrometers.  相似文献   

5.
Hybl JD  Tysk SM  Berry SR  Jordan MP 《Applied optics》2006,45(34):8806-8814
Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.  相似文献   

6.
Multielemental chemical imaging using laser-induced breakdown spectrometry   总被引:1,自引:0,他引:1  
Multichannel laser-induced breakdown spectrometry (LIBS) is used to generate selective chemical images for silver, titanium, and carbon from silicon photovoltaic cells. A 2.5 mJ pulsed nitrogen laser and a spectrometer using charge-coupled device detection were employed. LIBS images were acquired sequentially by moving the sample located on a motorized x-y translational stage step by step while storing the multichannel LIBS spectrum for each position of the sample, followed by computer-based reconstruction of two-dimensional selective images from intensity profiles at several wavelengths. Depth distributions of carbon impurities are also reported. Room temperature and atmospheric pressure operation as used here remove the restrictions on sample size exhibited by other surface analysis techniques used for imaging applications. Thus, the sample size in LIBS imaging is in principle unlimited. A LIBS experiment does not require a sample to be conductive. Therefore, virtually all materials can be imaged. Although LIBS is a typical example of destructive analytical technique, multichannel detection as demonstrated here confers the possibility to LIBS of obtaining multielement information from a given surface area. Lateral resolution of 80 μm and depth resolution of better than 13 nm were observed. The ultimate limitation to imaging the first layer of the surface in LIBS is the spectral signal-to-noise ratio as dictated by the ablation threshold of the material.  相似文献   

7.
Laser-induced breakdown spectroscopy (LIBS) is a well-known technique for fast, stand-off, and nondestructive analysis of the elemental composition of a sample. We have been investigating micro-LIBS for the past few years and demonstrating its application to microanalysis of surfaces. Recently, we have integrated micro-LIBS with laser-induced fluorescence (LIF), and this combination, laser ablation laser-induced fluorescence (LA-LIF), allows one to achieve much higher sensitivity than traditional LIBS. In this study, we use a 170 microJ laser pulse to ablate a liquid sample in order to measure the lead content. The plasma created was re-excited by a 10 microJ laser pulse tuned to one of the lead resonant lines. Upon optimization, the 3sigma limit of detection was found to be 35 +/- 7 ppb, which is close to the EPA standard for the level of lead allowed in drinking water.  相似文献   

8.
Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a tool for monitoring trace levels of helium in gas mixtures consisting mostly of hydrogen. Calibration data for helium in hydrogen was investigated at different helium concentration levels. At high concentrations of helium (>7.25%), the LIBS signal is quenched due to Penning ionization. The hydrogen alpha line (656.28 nm) was observed to broaden as the concentration of helium impurities in the hydrogen gas mixture increased. The helium line at 587.56 nm was selected as the analyte line for helium impurity detection. The effects of laser energy, the delay time between the laser pulse and data acquisition, and the gas pressure on the LIBS signal of helium were investigated to determine the optimum conditions for helium detection. The LIBS signal from the helium line at 587.56 nm shows good linear correlation with helium concentration for He concentrations below 1%. Thus, LIBS can be reliably used to detect the low levels of helium. The limit of detection for helium was found to be 78 ppm.  相似文献   

9.
Detection of sulfur by optical emission spectroscopy generally presents some difficulties because the strongest lines are in the vacuum UV below 185 nm and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low-cost and efficient system to detect sulfur using near-IR bands by laser-induced breakdown spectroscopy is here proposed. This concept is based on customized thick holographic gratings as spectral filtering elements. The signal integration and the temporal synchronization are performed using built-in custom electronics that amplify and integrate or trigger photodiode output signals. In this work, we use the near-IR lines at 921.287 nm and a background reference at 900 nm. Preliminary results show a limit of detection comparable to that of a conventional high-end system.  相似文献   

10.
The use of laser-induced breakdown spectroscopy (LIBS) to detect a variety of elements in soils has been demonstrated and instruments have been developed to facilitate these measurements. The ability to determine nitrogen in soil is also important for applications ranging from precision farming to space exploration. For terrestrial use, the ideal situation is for measurements to be conducted in the ambient air, thereby simplifying equipment requirements and speeding the analysis. The high concentration of nitrogen in air, however, is a complicating factor for soil nitrogen measurements. Here we present the results of a study of LIBS detection of nitrogen in sand at atmospheric and reduced pressures to evaluate the method for future applications. Results presented include a survey of the nitrogen spectrum to determine strong N emission lines and determination of measurement precision and a detection limit for N in sand (0.8% by weight). Our findings are significantly different from those of a similar study recently published regarding the detection of nitrogen in soil.  相似文献   

11.
Aerosolized drug delivery methods have increasingly become popular for pharmaceutical applications. This is mainly due to their ease of application and the more recent advancements incorporating nano-sized generation of particles that find deeper penetration routes and more efficient administration of the drug to specific target organs. Their effectiveness heavily relies on the uniformity of the chemical composition of these aerosolized drugs. Thus, it calls for a real-time on-line analytical tool that can accurately characterize the chemical constituents of the drug powder particles generated to ensure a stringent quality control. We present laser-induced breakdown spectroscopy (LIBS) for the first time as an efficient analytical tool to carry out on-line quantitative chemical characterization of aerosolized drugs. We used three different carbon based aerosolized drugs, namely L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (C(6)H(9)Mg(1.5)O(9)P.xH(2)O), Iron(II) L-ascorbate (C(12)H(14)FeO(12)), and DL-pantothenic acid hemicalcium salt (C(9)H(16)NO(5)0.5Ca) for our quantitative LIBS studies here. Our results show that LIBS can effectively estimate the quantitative ratios of carbon to various trace elements for each of these drugs, thereby enabling on-line unique characterization of individual aerosolized drugs. The quantitative LIBS technique predicted the [C]/[Mg], [C]/[Fe], and [C]/[Ca] ratios as 4.02+/-0.76, 12.42+/-2.36, and 18.47+/-4.39 for each of the above aerosolized drugs, respectively. Within error limits, we find these ratios in good agreement with the respective stoichiometric values of 4, 12, and 18 corresponding to the drugs above. Thus, the work demonstrated the utility and validity of LIBS in accurate on-line identification of drug powders during real-time manufacturing processes.  相似文献   

12.
A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.  相似文献   

13.
Laser-induced breakdown spectroscopy (LIBS) is examined as a potential method for detecting airborne biological agents. A spectrally broadband LIBS system was used for laboratory measurements on some common biological agent simulants. These measurements were compared to those of common, naturally occurring biological aerosol components (pollen and fungal spores) to determine the potential of LIBS for discriminating biological agents from natural background aerosols. A principal components analysis illustrates that linear combinations of the detected atomic lines, which are present in different ratios in each of the samples tested, can be used to discriminate biological agent simulants from other biological matter. A more sensitive, narrowband LIBS instrument was used to demonstrate the detection of single simulant (Bg) particles in the size range 1-5 microns. Ca, Mg, and Na, which are present in varying concentrations between 0.3 and 11% (by mass) in the Bg particles, were observed in single particles using LIBS.  相似文献   

14.
ML Shah  AK Pulhani  GP Gupta  BM Suri 《Applied optics》2012,51(20):4612-4621
We report the quantitative elemental analysis of a steel sample using calibration-free laser-induced breakdown spectroscopy (CF-LIBS). A Q-switched Nd:YAG laser (532 nm wavelength) is used to produce a plasma by focusing it onto a steel sample in air at atmospheric pressure. The time-resolved spectra from atomic and ionic emission lines of the steel elements are recorded by an echelle grating spectrograph coupled with a gated intensified CCD camera and are used for the plasma characterization and quantitative analysis of the sample. The time delay at which the plasma is in local thermodynamic equilibrium as well as optically thin, necessary for elemental analysis, is deduced. An algorithm for the CF-LIBS relating the experimentally measured spectral intensity values with the basic physics of the plasma is developed and used for the determination of Fe, Cr, Ni, Mg, and Si concentrations in the steel sample. The analytical results obtained from the CF-LIBS technique agree well with the certified values of the elements in the sample, with relative uncertainties of less than 5%.  相似文献   

15.
A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.  相似文献   

16.
Correlation of limestone beds is commonly based on a variety of features, including the age of the bed, the fossil assemblage, internal sedimentary structures, and the relationship to other units in the stratigraphy. This study uses laser-induced breakdown spectroscopy (LIBS) to correlate 16 limestone beds from Kansas, USA, using three multivariate techniques: (1) soft independent modeling of class analogy (SIMCA) classification, (2) a partial least squares regression, 1 variable (PLS-1) model in which the spectra are regressed against a matrix of the indicator variables 1 through 16, and (3) a matching algorithm that consists of a sequence of binary PLS-1 models. Each gravel-sized limestone particle was analyzed by one LIBS shot; ten spectra were averaged into a single spectrum for chemometric analysis. The entire spectrum (198-969 nm wavelength) is used for multivariate analysis; the only preprocessing is averaging. The SIMCA and PLS-1 models fail to discriminate among the beds, which are chemically similar. In contrast, the matching algorithm has a success rate of 95% to 96%, using half of the spectra to train the model and the other half of the spectra to validate it. However, 100% success can be accomplished by accepting the classification of the majority of spectra for a given bed as the correct classification. This study indicates that LIBS can be applied to complex geologic correlation problems and provide rapid, accurate results.  相似文献   

17.
Adamson MD  Rehse SJ 《Applied optics》2007,46(23):5844-5852
Laser-induced breakdown spectroscopy (LIBS), which is an excellent tool for trace elemental analysis, was studied as a method of detecting sub-part-per-10(6) (ppm) concentrations of aluminum in surrogates of human tissue. Tissue was modeled using a 2% agarose gelatin doped with an Al(2)O(3) nanoparticle suspension. A calibration curve created with standard reference samples of known Al concentrations was used to determine the limit of detection, which was less than 1 ppm. Rates of false negative and false positive detection results for a much more realistic sampling methodology were also studied, suggesting that LIBS could be a candidate for the real-time in vivo detection of metal contamination in human soft tissue.  相似文献   

18.
Shen XK  Lu YF 《Applied optics》2008,47(11):1810-1815
Detection of uranium in solids by using laser-induced breakdown spectroscopy has been investigated in combination with laser-induced fluorescence. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the uranium atoms and ions within the plasma plumes generated by a Q-switched Nd:YAG laser. Both atomic and ionic lines can be selected to detect their fluorescence lines. A uranium concentration of 462 ppm in a glass sample can be detected by using this technique at an excitation wavelength of 385.96 nm for resonant excitation of U II and a fluorescence line wavelength of 409.0 nm from U II.  相似文献   

19.
Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region.  相似文献   

20.
Yuan T  Wang Z  Li L  Hou Z  Li Z  Ni W 《Applied optics》2012,51(7):B22-B29
Quantitative carbon measurement in anthracites remains difficult with laser-induced breakdown spectroscopy (LIBS) due to its relatively high measurement uncertainty. To improve the measurement repeatability, binders to bind the anthracite powder together were utilized for LIBS measurement. Results showed that the optimized binder Na(2)SiO(3)·9H(2)O, with Si from the binder as the internal calibration element, can yield the overall best measurement precision and accuracy. Using 15 anthracites for calibration and 7 anthracites for validation and with optimized percentage of Na(2)SiO(3)·9H(2)O as binder, the average value of the measurement's relative standard deviation (RSD), R(2), and root mean square error of prediction (RMSEP) were 12.1%, 0.76, and 6.25%, respectively, proving the applicability of binder for carbon measurement in anthracites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号