共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
1,3-丙二醇分批发酵动力学模型 总被引:4,自引:1,他引:4
在分批发酵中,研究了Klebsiella pneumoniae的生长、底物甘油消耗及1,3-丙二醇的产生特性. 基于Logistic方程和Luedeking-Piret方程,得到了描述1,3-丙二醇分批发酵过程的动力学模型及模型参数,该组模型能很好地拟合发酵过程,并在初始甘油浓度变化较大的范围内表现出很好的适用性. 同时,所建立的模型也基本反映了Klebsiella pneumoniae分批发酵过程的动力学特征. 基于分批发酵动力学模型,提出了以甘油为单一碳源时的底物流加策略,通过与其他流加策略条件下的发酵对比实验表明,通过基于动力学模型的流加策略可获得更高的1,3-丙二醇浓度及生产强度. 相似文献
3.
4.
克雷伯杆菌生产1,3-丙二醇关键酶发酵条件研究 总被引:9,自引:2,他引:9
研究了克雷伯杆菌生产1,3-丙二醇关键酶(甘油脱氢酶、1,3-丙二醇氧化还原酶、甘油脱水酶)的发酵条件。研究各种碳源、无机氮源、有机氮源及无机盐对产酶的影响,应用均匀设计、神经网络和遗传算法优化发酵培养基组成,结果为(gL-1):甘油30、KCl 1.6、NH4Cl 6.7、CaCl2 0.28、酵母浸膏2.8。在温度37C、初始pH 7.0、摇床转速200rmin-1和接种量5%条件下,发酵24h,无细胞抽提液中甘油脱氢酶、1,3-丙二醇氧化还原酶和甘油脱水酶活力(U·mg-1)分别为9.16、18.72、0.48,发酵34h,发酵液中1,3-丙二醇(1,3-PD)最大浓度为7.96gL-1。代谢过程中关键酶酶活与1,3-PD峰值出现时间不一致,且提早于1,3-PD峰值的出现。此外,结果表明优化后的培养基去除了多种微量元素,克雷伯杆菌生产1,3-丙二醇关键酶可以在微氧条件下进行。 相似文献
5.
引 言1,3 丙二醇 (1,3 propanediol ,简称 1,3 PD)是一种重要的化工原料 ,主要用于合成对苯二甲酸丙二醇酯 .目前 1,3 PD的生产主要采用化学法 ,但因环境污染、石油资源紧张等 ,使其进一步发展受到限制 .欧美等国家积极开展通过发酵法生产 1,3 PD的研究[1] .Dupont公司开发的由葡萄糖合成 1,3 PD ,进而合成对苯二甲酸丙二醇酯的工艺 ,被授予2 0 0 3年美国总统绿色化学奖 .本课题组根据K pneumoniae兼性厌氧的特点 ,开发了两阶段双底物发酵的生产工艺[2 ] (twophas es twosubstrates ,简称TPTS) .经过工艺的优化 ,1,3 PD的产量已超过… 相似文献
6.
1,3-丙二醇发酵过程中底物抑制及其对策的研究 总被引:14,自引:1,他引:14
研究了底物甘油浓度对Klebsiellapneumoniae发酵生产 1 ,3 丙二醇的影响 ,并通过实验确定了最佳的初始甘油浓度和甘油开始对产物生成产生抑制作用的浓度。针对底物抑制现象 ,提出了菌种驯化和流加甘油发酵两种解决途径。结果表明 :采用原始菌株发酵 ,适宜的甘油初始浓度为 642 .4mmol/L ,此时 1 ,3 丙二醇浓度和转化率分别可达 2 60mmol/L和 0 .492mol/mol;在较高甘油初始浓度 (789mmol/L)的情况下 ,经驯化培养获得的耐底物抑制菌株 ,可将最终 1 ,3 丙二醇浓度和转化率分别提高到 30 0 .9mmol/L和 0 .530mol/mol;采用流加甘油发酵工艺 ,1 ,3 丙二醇浓度和转化率分别可提高到 397.7mmol/L和 0 .62 5mol/mol。 相似文献
7.
8.
在甘油厌氧发酵生产1,3-丙二醇的过程中,需要消耗还原当量NADH,NADH的有效供给决定了1,3-丙二醇的产量。本文从Candida boidinii基因组DNA中克隆了甲酸脱氢酶基因fdh,利用表达质粒pMAL TM-p2X-fdh转化到1,3-丙二醇生产菌 Klebsiella pneumoniae YMU2中,构建了具有NADH再生系统的重组菌Klebsiella pneumoniae F-1。在5 L发酵罐培养中,F-1合成1,3-丙二醇浓度和产率分别达到了78. 6 g·L-1 和1. 33 g·L-1·h-1,分别比YMU2提高了12. 5% 和41. 2%。根据F-1和YMU2菌株的主要代谢产物的生成情况比较了二者的代谢流分布。 相似文献
9.
分段通气对Klebsiella pneumoniae生产1,3-丙二醇关键酶和辅酶的影响 总被引:3,自引:0,他引:3
通过考察1,3-丙二醇合成中关键酶、辅酶的变化,研究了分段通入空气对Klebsiella pneumoniae厌氧发酵生产1,3-丙二醇的影响. 与对照组相比,在发酵前期(12 h)通入空气4 h后,甘油脱氢酶酶活提高1.5倍,1,3-丙二醇氧化还原酶酶活提高18%,1,3-丙二醇浓度提高16%;发酵后期(28和48 h)通入空气后,甘油脱氢酶酶活不变,1,3-丙二醇氧化还原酶酶活下降,1,3-丙二醇浓度降低. 发酵前期,通气对辅酶NADH和NAD的浓度无影响;发酵后期,菌体生长停滞,辅酶的浓度也随之下降. 相似文献
10.
3-羟丙醛对Klebsiella pneumoniae发酵产 1,3-丙二醇的影响及其调控 总被引:4,自引:0,他引:4
中间产物3-羟丙醛在发酵液中的积累对Klebsiella pneumoniae细胞生长及1,3-丙二醇的合成有显著的抑制作用,而调节发酵的起始甘油浓度及控制发酵pH值可调控发酵液中3-羟丙醛的积累.当起始甘油质量浓度分别为20、30、50、70g/L的批式发酵中,发酵液中3-羟丙醛的积累的高峰分别为4.31、6.87、11.48及13.49mmol/L,当起始甘油质量浓度大于50g/L时,3-羟丙醛在到达积累高峰后不能被菌体有效转化,在发酵后期维持较高浓度,抑制了细胞生长及1,3-丙二醇的合成,发酵不能继续进行.控制发酵pH值为7.75~8.0可促进发酵液堆积的3-羟丙醛被迅速转化.在流加发酵中起始甘油质量浓度采用30g/L,发酵pH值控制为7.75条件下,发酵32 h,1,3-丙二醇质量浓度可达37.16g/L,1,3-丙二醇的生产强度和质量得率分别达到1.16g/(L·h)和52.66%. 相似文献
11.
能量驱动对Klebsiella pneumoniae发酵甘油合成1,3-丙二醇的影响 总被引:2,自引:2,他引:2
考察了外加能量对Klebsiella pneumoniae合成1,3 丙二醇的影响,结果表明,外加0.6 0.8 g/L三磷酸腺苷 ATP 可以有效促进Klebsiella pneumoniae发酵甘油的还原代谢,1,3 丙二醇产量提高了50 70 ,得率在发酵后期仍能维持在较高水平. 利用休止细胞研究了甘油脱水酶催化失活后能量刺激复活的情况,结果表明外加三磷酸腺苷(ATP)对休止细胞中甘油脱水酶的复活有明显的驱动作用,经多次失活/驱动复活后甘油脱水酶活性可维持不变. 相似文献
12.
实验研究了重组Klebsiella pneumoniae批式发酵生产1,3-丙二醇过程中辅助碳源蔗糖与葡萄糖对发酵过程的影响,对发酵工艺进行了放大,并对流加策略进行了优化. 结果表明,葡萄糖为发酵生产1,3-丙二醇的辅助碳源优于蔗糖;以重组Klebsiella pneumoniae为菌种,以葡萄糖为辅助碳源,采用指数流加策略,30 L发酵罐中1,3-丙二醇的产量最高达85.2 g/L,产率达0.63 mol/mol,比单纯以甘油为碳源分别提高37.35%和25.00%. 相似文献
13.
对表达了高效醛脱氢酶的重组肺炎克雷伯氏菌以甘油为底物生产3-羟基丙酸和1,3-丙二醇的过程进行优化,将发酵过程中补料阶段甘油浓度分别控制为0~10, 10~20, 20~30 g/L,并分3次间歇性补加甘油. 结果表明,发酵过程中补料阶段控制甘油浓度在20~30 g/L,发酵26 h得到47.20 g/L 3-羟基丙酸和43.90 g/L 1,3-丙二醇;而间歇性补加甘油产物得率最高,发酵26 h时3-羟基丙酸和1,3-丙二醇相对甘油的得率分别为0.35和0.38 mol/mol. 3-羟基丙酸和1,3-丙二醇联产可实现辅因子烟酰胺腺嘌呤二核苷酸的再生平衡,从而提高碳回收率. 相似文献
14.
氧对Klebsiella pneumoniae产1,3-丙二醇代谢的影响 总被引:2,自引:0,他引:2
考察了氧对Klebsiella pneumoniae发酵产1,3-丙二醇(PDO)代谢的影响. 研究结果表明,在厌氧或供氧条件下,K. pneumoniae都能利用甘油产PDO. 起始甘油浓度20 g/L,发酵时间4 h,在充分供氧条件下,PDO产量仅为1.1 mmol/L;但在微量供氧条件下,PDO产量为16 mmol/L,是厌氧发酵时的1.28倍. 在微量供氧条件下,调控PDO合成的关键酶甘油脱氢酶、甘油脱水酶及1,3-丙二醇氧化还原酶的活性分别为7.28, 1.14, 0.52 U/mg,高于厌氧或充分供氧条件下的相应酶活性. 氧对细胞内NADH的合成也有影响,厌氧及微量供氧条件下菌体内NADH含量分别为3.78及3.72 μmol/g (DCW),高于充分供氧发酵时的0.85 μmol/g (DCW). 相似文献
15.
代谢副产物对Klebsiella pneumoniae生长及合成1,3-丙二醇的影响 总被引:5,自引:0,他引:5
研究了Klebsiella pneumoniae在厌氧摇瓶中的生长代谢特性和基质消耗情况,发现主要副产物乙醇是抑制菌体持续生长及1,3-丙二醇合成的主要因素,外源添加实验表明,8 g/L乙醇可使K. pneumoniae比生长速率、1,3-丙二醇比合成速率、最大菌体浓度及1,3-丙二醇终浓度分别下降21.6%, 22.1%, 59.6%及33.5%;指数生长期加入乙醇对菌体生长代谢的抑制作用更加明显. 其他代谢副产物乙酸、乳酸、2,3-丁二醇对K. pneumoniae生长代谢也有不同程度影响,乙酸浓度仅2 g/L即可对菌体生长产生抑制,乙酸浓度达到5 g/ 相似文献
16.
17.
控制氮源浓度提高1,3-丙二醇的发酵水平 总被引:6,自引:2,他引:6
通过对克雷伯氏菌(Klebsiella pneumoniae)甘油发酵生产1,3-丙二醇(1,3-PD)发酵过程的研究发现,氮源浓度对菌体生长、产物和副产物的代谢有着重要影响.氮源浓度较低时,菌体生长和产物生成都会因氮源不足受到影响;氮源浓度较高时会导致菌体过度生长和副产物的大量生成,降低1,3-PD的最终浓度和甘油到1,3-丙二醇的转化率.控制合适的氮源浓度可以提高1,3-PD的发酵水平,1,3-PD的最终浓度达到61.20 g·L-1、甘油到1,3-丙二醇的转化率达到0.72 (mol·mol-1),分别比对照提高了10%和20%. 相似文献