首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
有机电致发光器件(OLED)的封装技术研究   总被引:1,自引:0,他引:1  
有机电致发光显示器(OLED)对水汽和氧气非常敏感,渗入OLED器件内的水汽和氧气会和有机功能层及电极材料发生反应而影响器件寿命。为此,文中根据OLED器件对封装材料的要求,分析了OLED器件封装技术,重点介绍了薄膜封装技术的研究现状。  相似文献   

2.
有机电致发光器件(OLEDs)在使用过程中,易受到 空气中水汽、氧气及其它污染物的影响从而导致其工作寿命降低。本文将具有良好光透过率 和热稳定性的MgF2薄膜与在水汽和氧气中具有良好稳定性的Se薄膜通过真空蒸镀制成复 合薄膜作为OLEDs的封装层,以达到提高器件使用寿命的目的。器件各功能层蒸镀完成后, 保持真空度(3×10-4 Pa)不变,在阴极表面蒸镀MgF2/Se薄 膜封装层。比较 了绿光OLED器件(器件结构为ITO/CuPc/NPB/Alq3:C-545T/Alq 3/LiF/Al)封装前后的亮度-电压-电流密度特性、电致发光光谱及寿命。研究 发现,经过MgF2/Se封装后,器件的电流密度-电压特性、亮度和发光光谱几乎没 有受到影响,二者的光谱峰都在528 nm处,色坐标(CIE)分别为(0.3555,0.6131)和(0.3560,0.6104),只是起亮电压由3V变为4V;器件的寿命由原来的175h变为300h,提高了1.7倍 。因此,MgF2/Se薄膜是一种有效的OLEDs无机薄膜封装层。  相似文献   

3.
李军建  李树林  齐童  冯鹏斌 《中国激光》2008,35(s2):297-300
柔性有机电致发光器件(FOLED)封装材料的研究已成为目前国内外FOLED研究的热点。如何测量水蒸汽、氧气和其他活性气体对FOLED封装材料的渗透率, 是FOLED封装材料研究的一个重要课题。提出用质谱分析技术解决柔性有机电致发光器件封装材料气体渗透率的测量问题, 建立了一个封装材料渗透率的质谱法测量系统。介绍了该系统的原理, 利用该系统测量了水蒸汽、氧气和二氧化碳等气体对PET塑料, 以及水蒸汽对ITO薄膜、银薄膜等材料的渗透率。所获得的实验结果与其他文献报道的数据进行了比较, 证明质谱法测量的结果是可信的。  相似文献   

4.
针对有机电致发光器件(OLED)在空气中水汽和O2作用下寿命下降的问题,提出一种对OLED进行薄膜封装方法。封装薄膜由电子束蒸镀Al2O3薄膜和原子层沉积(ALD,atomic layer deposition)Al2O3薄膜相结合形成。利用Ca薄膜电学测试方法测定封装薄膜的水汽透过率(WVTR)。具体实现方法是,采用玻璃作为衬底,在100nm的Al电极上蒸镀200nm的Ca膜,然后对整个系统进行薄膜封装,只留出Al电极的一部分作为探针接触电极。实验发现,采用电子束蒸镀结合ALD的Al2O3薄膜封装,Ca薄膜变成透明的时间比未封装或采用单一结构封装得到了延长。为了检验薄膜封装效果,制作了一组绿光OLED,器件结构为ITO/MoOX(5nm)/mMTDATA(20nm)/NPB(30nm)/Alq3(50nm)/LiF(1nm)/Al,实验结果表明,本文提出的薄膜封装方法对器件进行封装,器件的寿命得到了延长。  相似文献   

5.
柔性显示是未来显示技术的重要发展方向之一,有机电致发光二极管(OLED)能否实现柔性应用依赖于薄膜封装技术的发展,而封装薄膜的水汽阻隔性能,标志着薄膜封装性能的好坏。介绍了OLED器件失效的原因,封装的必要及其对于封装的要求,重点介绍并分析了3种常用的OLED测试水汽透过率(WVTR)的方法,库伦电量法、重水法以及钙法。  相似文献   

6.
柔性OLED器件薄膜封装研究   总被引:1,自引:0,他引:1  
把有机发光二极管(OLED)制备在柔性基底上,以此来实现柔性显示是未来显示技术发展的一个重要方向。但柔性基底相对于玻璃基底来说对水、氧气的阻挡能力较弱。为了延长柔性OLED器件寿命,就需要在柔性基底上进行有效的封装。文章首先介绍了柔性OLED的器件结构和常规的封装方法,然后重点介绍了目前比较热门的Barix封装技术以及ALD技术,这两种技术都能够对器件进行有效的封装,将薄膜阻挡层的水汽渗透率降到一个较低的范围内,能够满足OLED在柔性显示和发光方面的需要,但是在效率和成本方面仍然需要进一步的改善。  相似文献   

7.
张靖磊  仲飞  刘彭义   《电子器件》2008,31(1):40-43
用磁控溅射方法制备的ZnS薄膜作为有机发光器件(OLEDs)的空穴缓冲层,使典型结构的 OLEDs(ITO/TPD/Alq/LiF/Al) 的发光性能得到改善.ZnS 缓冲层厚度对器件性能影响的实验结果表明,当ZnS缓冲层厚度为 5 nm 时,器件的亮度增加了2倍多;当ZnS缓冲层厚度为5、10 nm时,器件的发光电流效率增加40%.研究结果表明 ZnS 薄膜是一种好的缓冲层材料,它能够提高器件的发光效率,改善器件的稳定性.  相似文献   

8.
有机电致发光器件(OLED)因具有较多的优点,在显示领域有着光明的前景,其最大的优越性在于能够实现柔性显示,制作成柔性有机电致发光二极管(FOLED).OLED对水蒸气和氧气非常敏感,渗透进入器件内部的水蒸气和氧气是影响OLED寿命的主要因素,因此,封装技术对器件非常重要.对现有的主要的FOLED衬底材料和封装方法进行...  相似文献   

9.
通过UV树脂和柔性金属薄膜将干燥片和透气绝缘的聚二甲基硅氧烷(PDMS)膜封装在器件中, 利用钙(Ca)膜电学测试方法测定封装结构的水汽透过率 (WVTR),研究了该封装方法的水汽阻隔性能。实验结果表明, Ca膜蒸镀时的温度调控极大影响Ca膜均 匀性和表面形貌,从而影响器件的水汽透过率检测结果。本文提出的柔性金属封装方法具有 良好的水汽阻 隔性能,其WVTR在封装90h后仍达到5×10-4 g/m2/day 以下,水汽主要从器件周围的UV树脂渗透,与传统薄膜封装的水汽渗透机制有很大不同。  相似文献   

10.
硫系玻璃薄膜封装层对OLED寿命的影响   总被引:1,自引:1,他引:0  
在高真空条件下(3×10-4Pa),利用硫系玻璃(Se,Te,Sb)薄膜封装材料对有机电致发光器件(OLED)进行原位封装,有效避免了传统封装方法难以避免的水、氧危害,以达到延长器件寿命的目的。实验对比了正常封装与增加Se、Te、Sb薄膜封装层后器件的性能,对比实验中封装过程都未加干燥剂。研究发现Se、Te、Sb薄膜封装层分别可以使器件的寿命延长1.4倍,2倍,1.3倍以上;采用封装层对器件的电流-电压特性、色坐标等光电性能几乎不产生影响,但影响了器件散热,薄膜封装层使器件的击穿电压、最高亮度等参数稍有下降。  相似文献   

11.
A thin film encapsulation layer was fabricated through two-sequential chemical vapor deposition processes for organic light emitting diodes (OLEDs). The fabrication process consists of laser assisted chemical vapor deposition (LACVD) for the first silicon nitride layer and laser assisted plasma enhanced chemical vapor deposition (LAPECVD) for the second silicon nitride layer. While SiNx thin films fabricated by LAPECVD exhibits remarkable encapsulation characteristics, OLEDs underneath the encapsulation layer risk being damaged during the plasma generation process. In order to prevent damage from the plasma, LACVD was completed prior to the LAPECVD as a buffer layer so that the laser during LACVD did not damage the devices because there was no direct irradiation to the surface. This two-step thin film encapsulation was performed sequentially in one chamber, which reduced the process steps and increased fabrication time. The encapsulation was demonstrated on green phosphorescent OLEDs with I–V-L measurements and a lifetime test. The two-step encapsulation process alleviated the damage on the devices by 19.5% in external quantum efficiency compared to the single layer fabricated by plasma enhanced chemical vapor deposition. The lifetime was increased 3.59 times compared to the device without encapsulation. The composition of the SiNx thin films was analyzed through Fourier-transform infrared spectroscopy (FTIR). While the atomic bond in the layer fabricated by LACVD was too weak to be used in encapsulation, the layer fabricated by the two-step encapsulation did not reveal a Si–O bonding peak but did show a Si–N peak with strong atomic bonding.  相似文献   

12.
Organic light emitting diodes (OLEDs) employing organic thin-film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin-film photovoltaic techniques using organic or organic–inorganic hybrid materials such as organic photovoltaics (OPVs) and perovskite solar cells (PSCs) have become emerging competitive candidates with regard to the traditional photovoltaic techniques on account of high-efficiency, low-cost, and simple manufacturing processing properties. However, OLEDs, OPVs, and PSCs are vulnerable to the undesired degradation induced by moisture and oxygen. To afford long-term stability, a robust encapsulation technique by employing materials and structures that possess high barrier performance against oxygen and moisture must be explored and employed to protect these devices. Herein, the recent progress on specific encapsulation materials and techniques for three types of devices on the basis of fundamental understanding of device stability is reviewed. First, their degradation mechanisms, as well as, influencing factors are discussed. Then, the encapsulation technologies and materials are classified and discussed. Moreover, the advantages and disadvantages of various encapsulation technologies and materials coupled with their encapsulation applications in different devices are compared. Finally, the ongoing challenges and future perspectives of encapsulation frontier are provided.  相似文献   

13.
We present an approach, which is compatible with both glass and polymer substrates, to in-laboratory handling and intra-laboratory shipping of air-sensitive organic semiconductors. Encapsulation approaches are presented using polymer/ceramic and polymer/metal thin-film barriers using commercially available materials and generally available laboratory equipment. A technique for depositing an opaque vapor barrier, a transparent vapor barrier, and an approach to storing and shipping air-sensitive thin-film organic semiconductor devices on both polymer and glass substrates are presented. Barrier performance in air was tested using organic light-emitting diodes (OLEDs) as test devices. The half-life performance of OLEDs on plastic substrates in air exceeded 700 h, and that on glass exceeded 500 h. Commercially available heat-seal barrier bag systems for device shipping and storage in air were tested using a thin film of metallic calcium to test water permeation. More than four months of storage of a metallic calcium film in a heat-sealed foil bag was demonstrated in the best storage system. These approaches allow for the encapsulation of samples for longer duration testing and transportation than otherwise possible.  相似文献   

14.
Understanding the influence of residual gases present during vacuum deposition of organic light-emitting diodes (OLEDs) and their effect on the device lifetime and the electrical characteristics of OLEDs is crucial for advancing industrial fabrication. In order to gain a more in-depth understanding, the influence of residual nitrogen, oxygen, and water vapor on lifetime and electrical characteristics is investigated. This is achieved by introducing the residual gases into the evaporation chamber through a needle valve while monitoring the partial pressures with the help of a mass spectrometer. We find that water vapor introduces a series resistance to the OLED while the other gases do not influence the electric characteristics. The presence of oxygen or nitrogen impacts the lifetime of the OLEDs by the same amount. Water vapor introduces an additional, even faster degradation process within the first hours of OLED operation. The electrically stressed OLEDs are analyzed by laser desorption/ionization time-of-flight mass spectroscopy. We identify the dimerisation of BPhen as well as the complexation reaction of αα-NPD with an Ir(piq)2 fragment as sources of device degradation.  相似文献   

15.
Long lifetime and high efficiency are strongly desired for electronic devices. Encapsulation is especially required for organic light-emitting diodes (OLEDs) because they are extremely sensitive to the ambient moisture and oxygen. However, few studies had investigated their individual effects. We found in this study that even with a trace amount, oxygen showed drastically marked effects on both the short- and long-term properties of OLEDs, either typical or tandem. It is unprecedented to see that moisture did not compromise the device performance at least within the 20 ppm level. In contrary, the moisture helped alleviate the attack of oxygen via reducing its kinetic energy and collision probability striking on the aluminum surface. The findings suggest a more stringent oxygen control in fabrication and encapsulation to achieve an upmost device performance.  相似文献   

16.
Biomimetic nanostructures like butterfly wing's scale were fabricated with an anodic aluminum oxide (AAO) nanoimprint lithography technique. This bio-inspiration nanostructure exhibits an intrinsic hydrophobic property and thus was applied as a flexible encapsulation layer in organic light-emitting diodes (OLEDs) to improve device's lifetime. A ∼80% enhancement on lifetime was obtained with simply imprinting the biomimetic nanostructures onto the flexible substrates. Our work provides a simple encapsulation approach for OLEDs, especially for flexible OLEDs.  相似文献   

17.
Direct encapsulation of organic light-emitting devices (OLEDs) was realized by using highly transparent, photo-curable co-polyacrylate/silica nanocomposite resin. Feasibility of such a resin for OLED encapsulation was evaluated by physical/electrical property analysis of resins and driving voltage/luminance/lifetime measurement of OLEDs. Electrical property analysis revealed a higher electrical insulation of photocured nanocomposite resin film at 3.20times1012 Omega in comparison with that of oligomer film at 1.18times1012 Omega at 6.15 V to drive the bare OLED. This resulted a lower leakage current and the device driving voltage was efficiently reduced so that the nanocomposite-encapsulated OLED could be driven at a lower driving voltage of 6.09 V rather than 6.77 V for the oligomer-encapsulated OLED at the current density of 20 mA/cm2. Luminance measurement revealed a less than 1.0% luminance difference of OLEDs encapsulated by various types of resins, which indicates that the photo-polymerization takes very little effect on the light-emitting property of OLEDs. Lifetime measurement of OLEDs found that , the time span for the normalized luminance of device drops to 80%, for nanocomposite-encapsulated OLED is 350.17 h in contrast to 16.83 h for bare OLED and 178.17 h for the oligomer-encapsulated OLED. This demonstrates that nanocomposite resin with optimum properties is feasible to OLED packaging and a compact device structure could be achieved via the method of direct encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号