共查询到19条相似文献,搜索用时 62 毫秒
1.
微流量传感器是有着功耗低、响应快、精度高等优点,在汽车工业、航空航天、生物研究、临床诊断等多个领域有广泛的应用。量热微流量传感器是通过测量加热器上下游温差来确定流速的,然而当流速超过一定范围后温差响应将不会随流速的增大,限制了流量传感器的量程。本文首先数值模拟了在大流率跨度下(0~160 SCCM)下温差对流速的响应,发现当扩散作用占主导时温差对流速的响应几乎是线性的;随着流速的增大,温差的响应逐渐降低,呈非线性;当流速进一步增加时温差的响应趋于饱和,量热工作模式失灵。然后,在数值模拟基础上提出了在大流速下采用热线工作模式,而中小流速下依然采用量热模式的双模式微热流量传感器。最后,采用0.18μm CMOS-MEMS的工艺制作了微传感器,并以灵敏度为准则划定了工作模式的切换阈值,与标准流量计比较后发现误差在2%之内,符合实际应用要求,但量程扩大了一倍。 相似文献
2.
3.
李艳 《仪表技术与传感器》2012,(7):12-15
介绍了以AT89C52单片机为核心,以CD4049串并联组合及超声波发射换能器TCT40-10F1构成超声波发射电路,以CX20106A红外集成电路为核心构成超声波接收电路,采用C语言编程的超声波测流量系统。系统由电源、超声波发射装置、超声波接收装置、键盘输入、流量显示、报警装置、通信设备等组成。采用了速差法测流量的原理,从而消除了温度对测量结果的影响。同时采用一发一收双传感器的测量方案,降低了传感器盲区对测量精度的影响,提高了超声波测量的精度和可靠性。 相似文献
4.
提出了一种新颖的微机械谐振式微流量传感器.该传感器采用电磁激励方式.传感器主要由1个3 μm 厚H型谐振器、1个40 μm厚的悬臂梁平板(2 000 μm×5 000 μm)以及连接平板和框架的2根40 μm厚的支撑梁组成.谐振器采用低应力富硅氮化硅SiN制作,可以方便地使用湿法腐蚀释放谐振器,从而简化工艺流程,提高成品率.文中分析了理论模型、有限元仿真(FEA)、工艺制造和测试结果.测试结果显示,传感器在1 SLM(标准L/min)流量下,频率漂移为500 Hz,分辨率达到5/1 000.但在输出(谐振器频率漂移)和输入(气体流量)间存在二次曲线关系. 相似文献
5.
为提高微流体系统中的流量检测灵敏度,增大动态检测范围,实现温度补偿,提出了一种基于Lamb波的压差式微流量传感系统.该传感系统主要由两个Lamb波压力传感器和微通道组成,它利用Lamb波薄膜内应力的敏感特性,以频率计量的方式间接测量微通道两端的压力差;并采用双Lamb波压力传感器构成差动式测量结构进行温度补偿.对长20 mm,宽1 mm,高50 μm的微通道进行了流量测试实验,结果表明:在流量测试范围内,微通道两端的频率差与流量基本呈线性变化,其线性相关系数为0.999 9;在微流量传感器未进行优化的前提下,最小检测量为0.627 μL/s. 相似文献
6.
7.
8.
为提高微小流量检测的灵敏度,增大其动态范围,实现温度补偿,提出了一种基于Lamb波的压差式微流量传感器。此传感器主要由两个Lamb波传感器,中间以微通道相连接构成。流体流动时,利用Lamb波薄膜内应力的敏感特性,采用频率计量的方式间接测量微通道两端的压力差,并结合微通道的几何尺寸以及流动特性,利用流体仿真软件Fluent进行仿真获得流量。本文对长20mm,宽1mm,高50μm的微通道进行了微流量测试的相关实验。实验结果表明:在流量测试范围内,微通道两端的频率差与流量基本呈线性变化,其线性相关系数为0.9999;在微流量传感器没进行优化的前提下,其最小检测量为0.627μL/s。 相似文献
9.
10.
11.
针对永磁同步电机设计、参数优化和热分析等问题,对永磁同步电机的热路法温度计算进行了研究,建立了考虑安装和冷却方式的热路模型,提出了一种热路关键参数的测试方法,测试了机壳与空气间的等效热阻、端盖与空气间的等效热阻、安装板与空气间等效热阻,绕组与定子铁芯之间的等效热传导系数,机壳与定子铁芯之间的等效空气隙厚度、端盖与机壳间的等效空气隙厚度、安装板与端盖之间的等效空气隙厚度等热路参数.同时对热路模型进行了热阻敏感性分析,得到了影响电机温升的主要热路参数.实验结果表明,该热路模型和实验测试数据,可以较准确地计算电机温升,误差在5%以内.该热路模型和实验测试热路参数可为同类型电机的设计以及热分析提供很好的参考. 相似文献
12.
13.
加热式差分热电阻水位传感器由加热热电阻和不加热热电阻构成,可连续测量水位。理论分析表明水位与差分热电阻ΔRt呈线性关系。水位传感器没有运动部件,热式原理直接敏感水位,测量精度高,工作安全可靠,寿命长。试验结果表明,传感器的测量精度可达±1.5%~±2.0%,该水位传感器尤其适用于核场或其他高可靠应用的场合。 相似文献
14.
微热板式气压传感器结构设计与热分析 总被引:7,自引:1,他引:7
给出了采用牺牲层技术制作的微热板式气压传感器的加工工艺和工作原理.分析了微热板各层薄膜厚度、微热板下气隙高度、支撑桥尺寸、微热板面积大小对传感器加工、工作性能的影响,并结合实际工艺条件设计了一种采用不同支撑桥尺寸的传感器结构.理论分析了恒温加热方式下微热板各种传热途径随气压的变化关系;用有限元方法模拟了恒流加热方式下气压对传感器温度分布和温度大小的影响.分析结果显示,气压较高时微热板传热以气体导热为主,而气压较低时以支撑桥导热为主;微热板区域温度分布较均匀,温度大小受气压影响较大;设计的传感器测量范围为10~105Pa,功耗在毫瓦级,且具有尺寸小、热响应快、易与电路集成等优点. 相似文献
15.
针对空间光学遥感器在轨运行期间其热物理属性的实际参数与热设计参数之间存在一定的偏差,从而影响整机热设计的问题,本文基于系统灵敏度理论,对空间光学遥感器的热设计进行了分析,并建立了在轨条件下的热平衡方程组.通过分析热平衡方程组的设计变量,总结出影响整机温度分布的热设计参数.以某空间光谱成像仪热设计为例,分析了上述影响整机温度分布的设计参数的灵敏度.灵敏度分析结果表明:整机平均温度对太阳吸收系数的灵敏度几乎为零;对红外半球发射率的灵敏度为2.2~14.55℃;对内部热源的灵敏度为1.8~2℃/W;对导热率的灵敏度为2.25×10-3~4.39×10-2 m℃2/W:对接触导热系数的灵敏度为0~1.1×10-3 m2℃2/W.试验验证结果表明,基于灵敏度分析结果的热控设计方案有效且可行. 相似文献
16.
为了从根本上解决在线式微波功率传感器灵敏度、动态范围和微波性能之间的矛盾,本文创新性地设计出一种耦合在
线式 MEMS 微波功率传感器,将微波功率的提取和检测两个过程相互独立。 根据理论解析模型,得到了灵敏度特性与耦合度
的关系,分析对比了耦合度分别为 10% 和 20% 时的微波特性及灵敏度特性差异。 实验结果表明:两种耦合式 MEMS 微波功率
传感器的反射损耗均小于-20 dB,说明具有良好的反射性能;两种耦合式 MEMS 微波功率传感器的插入损耗均大于-1. 5 dB,说
明具有良好的传输性能。 耦合度 10% 的系统灵敏度为 1. 2 mV/ W @ 9 GHz、1. 4 mV/ W @ 10 GHz 和 0. 8 mV/ W @ 11 GHz,耦合
度 20% 的系统灵敏度为 2. 4 mV/ W @ 9 GHz、2. 4 mV/ W @ 10 GHz 和 1. 3 mV/ W @ 11 GHz,并具有良好的线性度。 本文对于
MEMS 微波功率传感器研究具有一定的参考价值。 相似文献
17.
该项工作制作并验证了基于微纳光纤结型谐振环的高灵敏度且扩大测量范围的温度传感器。 在微纳光纤谐振环中产
生多个模式并参与谐振,多个模式谐振的光谱相互叠加,形成带包络的游标光谱。 通过提取游标光谱的包络线,实现高灵敏度
的温度测量,灵敏度高达-10 nm/ ℃ 。 但计算得到利用游标光谱时的温度测量范围仅约为 4℃ 。 为解决测量范围过小的问题,
将包络光谱与单一频率组分对应的谐振光谱相结合,使测量范围扩大至约 20℃ 。 相比于单一频率组分对应的谐振光谱,利用
游标包络光谱实现了灵敏度约 1 600 倍的放大。 该方案利用游标效应提高温度测量灵敏度的同时,利用单一频率组分对应的
谐振光谱扩大了游标光谱的温度测量范围,提高了传感器的性能和实用性。 相似文献
18.
空间光学遥感器轨道外热流的模拟 总被引:3,自引:5,他引:3
通过热平衡试验,探索飞行器及其组件特别是关键光学组件受空间高真空和超低温环境作用的热效应规律、验证其热设计的正确性、修正热分析模型以及考核热控系统维持各组件和整个系统在规定工作温度范围内的能力,其中非常重要的一项任务在于采用合理的模拟方法和适宜的加热装置来模拟其轨道外热流的等效作用.针对其结构、表面特性、外热流分布的特点和热平衡试验的要求,叙述了一种轨道外热流的红外模拟方法和工程算法,着重提出了空间光学遥感器外露光学组件轨道外热流的模拟方法及其装置.借助计算机软件,在验证和修正的基础上,确定模拟装置的红外加热片的参数.研究结果提供了一种模拟飞行器组件、空间光学遥感器光学组件外热流的途径. 相似文献