首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以三聚氯氰(TCT)、对羟基苯磺酸为原料,合成了水溶性的2,4-二(4-羟基苯磺酸钠)-6-氯-1,3,5-三嗪(DPHACT);通过红外光谱和质谱表征其结构。将DPHACT用于微晶纤维素(MCC)的修饰,并将修饰后的微晶纤维素于130℃、固液比为1∶20的条件下用8%(wt,质量分数,下同)H2SO4水解5h。研究DPHACT用量对纤维素微晶结构和水解性能的影响。实验结果表明,经DPHACT改性后的微晶纤维素水解后还原糖的得率有所提高,当DPHACT相对摩尔含量为6.25%时,微晶纤维素水解后还原糖的得率最大(12.42%);通过分析广角X射线衍射图发现,经DPHACT改性后,微晶纤维素的结晶结构发生了变化:无定形取含量增加,结晶指数下降,晶粒尺寸减小。  相似文献   

2.
纤维素酸水解过程中促进无定形区降解,保留结晶区是制备微晶纤维素的关键技术。以阔叶木浆为原料,研究了Fe3+对纤维素结晶区和无定形区选择性酸水解的影响;并采用XRD、FT-IR、SEM等方法对水解纤维素的结晶结构、化学结构和微观形貌进行了分析和表征。结果表明,温和条件和强化条件下Fe3+对纤维素的酸水解均起促进作用,其中强化条件下Fe3+更有利于纤维素的选择性酸水解;强化条件下,Fe3+浓度为0.2 mol/L时,水解纤维素的得率为87.28%,结晶度为62.89%;XRD分析表明,纤维素酸水解后晶型未发生变化;FT-IR分析表明,纤维素酸水解后产物没有引入新的官能团,氢键含量发生变化并导致吸收峰强度发生改变。  相似文献   

3.
利用二甲基亚砜/氯化1-烯丙基-3-甲基咪唑(DMSO/AmimCl)体系通过溶解纤维素无定型区及残缺的结晶区来制备微晶纤维素。利用FT-IR、XRD、TGA和SEM等技术对微晶纤维素的结晶度、得率、结构、热稳定性能以及形态特性进行分析。研究结果表明,在DMSO/AmimCl质量比为0.4的溶剂体系中,得到的微晶纤维素性能最好,并对此实验的再现性进行了论证。FT-IR和XRD结果表明,所得微晶纤维素的化学结构以及结晶结构与商品微晶纤维素基本一致,微晶纤维素的晶型为纤维素Ⅰ型,结晶度为69.23%。TGA和SEM表明微晶纤维素的热稳定性能优异,多数纤维形态呈棒状,通常表面具有长条形凹痕。  相似文献   

4.
申曙光  王涛  秦海峰  代光  李焕梅 《功能材料》2012,43(12):1598-1601
采用磁性碳纳米管(CNTs)、葡萄糖、炼焦酚渣为碳源,制得碳基固体酸催化剂.通过XRD、FTIR、13C NMR和SEM/TEM对其结构和活性基团进行表征,并且以经过预处理的微晶纤维素为纤维素模型物,以总还原糖得率为考察指标,利用制备的碳基固体酸非均相催化水解纤维素,比较了3种碳源制得的碳基固体酸在水解纤维素中的水解效率.研究结果表明,与传统原料葡萄糖制得的碳基固体酸相比,酚渣基固体酸碳环上除了含有酚羟基、羧基和磺酸基外,还含有其它碳基固体酸不具备的烷基侧链,这一结构优势对碳基固体酸催化剂的催化活性具有促进作用,能够提高碳基固体酸催化剂的水解效率;碳纳米管固体酸尽管具有致密的碳层结构、磺化后磺酸密度低,但高比表面积使其在非均相催化水解纤维素中表现出较高的活性.  相似文献   

5.
目的 制备氧化微晶纤维素交联壳聚糖复合膜,并探索交联改性对壳聚糖复合薄膜性能的影响。方法 首先采用高碘酸钠氧化法对微晶纤维素进行氧化处理,制备氧化微晶纤维素,再通过溶液共混流延法制备不同质量分数(0%、1%、3%、5%、7%、9%)的氧化微晶纤维素交联壳聚糖复合薄膜。通过对复合薄膜组分、形貌、力学性能、光学性能、热稳定性及阻隔性能的表征,考察不同含量的氧化微晶纤维素对壳聚糖薄膜各性能的影响。结果 氧化微晶纤维素表面的醛基能与壳聚糖中的氨基发生交联反应,氧化微晶纤维素的加入可以改善壳聚糖薄膜的拉伸强度和断裂伸长率,复合薄膜的拉伸强度和断裂伸长率最大分别达到了43.07 MPa和19.42%;随着氧化微晶纤维素含量的增大,复合薄膜的紫外屏蔽性能增强,水蒸气透过系数增高,但热稳定性未见明显变化。结论 采用氧化微晶纤维素交联改性壳聚糖可以有效改善壳聚糖薄膜的力学性能和紫外屏蔽性能,有助于进一步扩大其包装应用范围。  相似文献   

6.
通过在纤维素水解体系中引入非质子型溶剂环丁砜,提升了纤维素的水解变糖效率,将纤维素发生快速水解的临界聚合度由51提升至64。经催化转化后,纤维素转化率和还原糖产率最高分别达到98.1%和74.8%。  相似文献   

7.
四嗪改性碳纳米管环氧摩擦材料的研究   总被引:1,自引:0,他引:1  
利用Diles-Alder反应,采用3,6-二氨基-1,2,4,5-四嗪对碳纳米管(CNTs)改性处理,考察了改性处理对碳纳米管表面结构、分散程度以及对环氧复合材料性能的影响,通过扫描电镜(SEM)、红外光谱(FTIR)Raman)分析了材料表面磨损形貌、多壁碳纳米管(MWNTs)分散程度以及碳纳米管结构变化,并探讨复合材料摩擦磨损机理、四嗪与碳纳米管反应机理.结果表明,通过四嗪化合物处理碳纳米管后,碳管表面连接活性基团氨基,结构形态发生改变,提高碳纳米管在基体中分散性和复合材料摩擦性能,8h处理MWNTs/EP比未处理MWNTs/EP复合材料摩擦系数降低6.5%,磨耗率降低71.4%.  相似文献   

8.
乳酸原位聚合改性纳米纤维,并和聚乳酸制备复合材料。先由64%硫酸水解微晶纤维素(MCC)制备纳米纤维素(NCC),再乳酸原位聚合接枝纳米纤维素得到改性后纳米纤维素(g-NCC),最后将g-NCC按0%~5%质量比与聚乳酸(PLA)共混,制成复合材料g-NCC/PLA。透射电子显微镜观察得到棒状纳米纤维素长度为100~200nm,直径为10~25nm,傅里叶变换红外光谱和核磁共振谱证明乳酸均聚物已接枝到纳米纤维素,复合材料性能分析表明g-NCC与PLA相容性比未改性NCC与PLA相容性好,g-NCC含量为2%时,复合材料拉伸强度可达到45 MPa,比纯PLA提高85%,结晶度提高10%。  相似文献   

9.
氨基化改性可有效地破坏纤维素固有的结晶结构,赋予纤维素一定的碱性,改善纤维素的水溶性,极大地提升了纤维素的利用价值。文中对氨基纤维素的合成路径及结构特征进行了归纳总结。通过具体实例分析,总结了氨基纤维素在吸附、生物医药、催化剂和酶蛋白固载领域的应用,提出了氨基纤维素绿色合成、生物相容性分析、仿生材料设计等研究发展方向。期望为氨基纤维素的利用提供理论参考,为氨基纤维素的研究提供方向。  相似文献   

10.
采用3-氨基丙基三乙氧基硅烷(KH550)对自行制备的剑麻纤维素微晶(SFCM)进行表面改性,采用双螺杆挤出机对SFCM与酚醛树脂(PF)进行熔融共混,采用模压成型方法制备SFCM/PF复合材料。研究不同SFCM含量的SFCM/PF复合材料的力学、摩擦学性能,并采用扫描电镜(SEM)观察磨损面的形貌。结果表明,SFCM的加入能有效提高复合材料的力学性能和摩擦性能,当SFCM含量为6%时,复合材料的冲击强度提高了55.56%,SFCM含量为4%时,复合材料的弯曲强度提高了31.37%;SEM观察发现,改性后的SFCM为微纤维形态,径向尺寸为10μm;热重分析表明,改性SFCM初始分解温度比剑麻纤维提高了60℃。  相似文献   

11.
马来酸酐固相接枝微晶纤维素   总被引:3,自引:0,他引:3  
研究了马来酸酐(MAH)固相接枝微晶纤维素(MCC)的反应工艺,并通过红外光谱、X射线衍射对微晶纤维素及其接枝产物进行了对比表征。红外结果表明,接枝产物在1719.13cm-1处出现了酯基的伸缩振动吸收峰,可定性地说明马来酸酐与微晶纤维素发生了接枝反应。X射线衍射结果表明,接枝反应并没有改变微晶纤维素的结晶结构,仅使其结晶度下降。文中探讨了接枝反应温度、时间和MAH用量等因素对接枝取代度的影响。当马来酸酐与微晶纤维素质量比为8%,反应温度90℃,反应时间3h,可得到取代度达0.1的马来酸酐接枝微晶纤维素。  相似文献   

12.
多相体系下微晶纤维素醋酸酯化表面改性的研究   总被引:1,自引:0,他引:1  
在多相体系下对微晶纤维素进行了表面改性.得到了只改善表面物性而不破坏其内部结晶区结构的微晶纤维素,同时其分散性和与高分子体系的相容性也有一定改善。通过一系列的表面改性,研究了微晶纤维素的晶体结构和物性随着取代度的变化规律,并利用TGA对其热性能进行了分析。  相似文献   

13.
采用静电纺丝法制备了3-羟基丁酸-4-羟基丁酸共聚物(P(3HB-co-4HB))/醋酸纤维素(CA)复合纳米纤维,研究了水解处理对静电纺P(3HB-co-4HB)/CA复合纳米纤维形貌、结构及性能的影响。水解处理后纤网结构仍然保持完整,但复合纳米纤维的平均直径有所下降,纤网结构变得更密实。在水解处理过程中乙酰基转变为羟基,随着水解时间的延长,羟基含量增加,CA分子链的结构变得规整,羟基之间的相互作用使分子链能够规整排列,从而有助于CA和P(3HB-co-4HB)的结晶。水解处理后,复合纳米纤维的热稳定性得到明显提高、材料由疏水性转变为亲水性,力学性能有较大幅度的提升,更有利于细胞的粘附。水解处理后的P(3HB-co-4HB)/CA复合纳米纤维更适宜用作生物材料应用在组织工程支架材料领域。  相似文献   

14.
以微晶纤维素(MCC)为原料,基于酸水解法制备了纳米微晶纤维素(NCC)。随后,在水/二甲基亚砜反应体系中,以2,3-环氧丙基三甲基氯化铵(GTMAC)为阳离子醚化剂对NCC进行改性得到了阳离子化的纳米微晶纤维素(CNCC)。最后,对NCC、CNCC在纸张阻隔涂布中的应用进行了初步探讨。实验结果表明,NCC呈棒状结构,粒径10~80nm,长度400nm,其水相分散液在光照下呈现特殊的蓝光效应。通过氮元素分析法,测得CNCC的取代度为4.1%;FT-IR、XRD分析结果确证了NCC被成功改性;TEM、TG分析结果表明,与NCC相比,CNCC具有较好的分散性和热稳定性。初步应用结果表明,相对于NCC,CNCC对涂布纸阻隔性能改善效果较为明显,且当添加量为0.2%时效果最佳,与零添加的涂布纸相比,透气度下降了22.4%,吸水性降低了34.4%。  相似文献   

15.
鲁昕  刘玲艳 《包装工程》2011,32(21):54-57,61
应用微晶纤维素和尿素溶液对大豆分离蛋白进行改性,得到了一系列大豆蛋白胶黏剂,考察了微晶纤维素含量、尿素浓度对胶黏剂胶黏强度的影响;进一步优化了胶黏剂的热压条件。实验结果表明:微晶纤维素改性大豆蛋白胶黏剂(MSP)的胶黏强度比未改性大豆蛋白胶黏剂的大,微晶纤维素含量对改性大豆蛋白胶黏剂胶黏强度的影响存在一个最佳值;微晶纤维素和尿素共同改性大豆蛋白胶黏剂相比仅有微晶纤维素改性的大豆蛋白胶黏剂,其胶黏强度进一步提高。研究MSP热压条件发现,其最佳热压条件为:热压温度100℃;热压压力2 MPa;热压时间10 min。  相似文献   

16.
通过浓硫酸水解脱脂棉制备纤维素纳米晶体(CNC),并用3-氨基丙基三乙氧基硅烷(APTS)对其进行表面修饰。以4,4-二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃(PTMG)、CNC、1,4-丁二醇(BD)为原料制备聚氨酯弹性体/纤维素纳米晶体(PUE/CNC)复合材料,研究了CNC用量对PUE/CNC复合材料性能的影响。结果表明:当CNC用量达到1%(wt,质量分数,下同)时,复合材料的拉伸强度和断裂伸长率分别提高了178%和97.5%,热性能也有所提高;但CNC用量超过1.5%后,复合材料的力学性能下降,热性能仍保持提升。  相似文献   

17.
以6-氨基己酸(6-AC)、己二酸(AA)和乙二醇(EG)为原料,采用熔融缩聚法合成了可生物降解聚酯酰胺(PEAs),对处理提纯后的共聚物用红外光谱进行了结构表征;利用差示扫描量热法表征了共聚物的熔融过程和结晶过程,并研究了产物的吸水性和水解降解行为。结果表明,红外光谱图中共聚物中酯键吸收峰的强度随着酯含量的增加而增强;聚合物的熔点(Tm)、熔融焓(ΔHm)和结晶温度(Tc)、结晶焓(ΔHc)随着酯含量的增加而明显降低。共聚物的组成对吸水率影响不大,其降解速率随酯含量的增加而加快;共聚物在酸性溶液中降解速率最快,在碱性溶液中降解速率次之,在近于中性溶液中降解速率最慢。  相似文献   

18.
采用双(4-氨基苯基醚)(ODA)修饰多壁碳纳米管(MWNTs),合成出结构新颖的衍生物MWNT-ODA.FTIR分析表明,ODA分子通过酰胺键与MWNTs共价键接.MWNT-ODA中MWNTs的含量约为43.5%(质量含量),并可溶于N,N'-二甲基甲酰胺等极性有机溶剂.该衍生物可作为碳纳米管进一步功能化的基础材料,而且在高分子交联剂等方面具有潜在的应用前景.  相似文献   

19.
选择废弃棉纤维和粘胶纤维两种纺织纤维作为水热炭化原料,并以微晶纤维素为模型底物进行对比,研究原料结构对水热炭化条件及产物的影响。结果表明,高结晶度的棉纤维(60.35%)和微晶纤维素(60.24%)制备炭微球的最佳条件分别是330℃,6 h,0.15%CuSO_4和310℃,6 h,0.10%CuSO_4,而低结晶度(34.31%)的粘胶纤维的最佳条件为260℃,8 h。结晶度越低,水热炭化条件越温和,而聚合度对其影响不显著。采用SEM、XRD、FTIR、TG和EDS对炭化产物进行表征,结果表明,不同原料合成的炭微球具有类似的无定型结构和丰富的官能团,但棉纤维和微晶纤维素合成的炭微球具有更高的碳含量和热稳定性,这可能是更高的水热炭化温度所致。因此,纤维素结晶度是影响其水热炭化合成炭微球的重要因素。  相似文献   

20.
以6-氨基己酸(6-AC)、己二酸(AA)和乙二醇(EG)为原料,采用熔融缩聚法合成了可生物降解聚酯酰胺(PEAs),对处理提纯后的共聚物用红外光谱进行了结构表征;利用差示扫描量热法表征了共聚物的熔融过程和结晶过程,并研究了产物的吸水性和水解降解行为。结果表明,红外光谱图中共聚物中酯键吸收峰的强度随着酯含量的增加而增强;聚合物的熔点(Tm)、熔融焓(ΔHm)和结晶温度(Tc)、结晶焓(ΔHc)随着酯含量的增加而明显降低。共聚物的组成对吸水率影响不大,其降解速率随酯含量的增加而加快;共聚物在酸性溶液中降解速率最快,在碱性溶液中降解速率次之,在近于中性溶液中降解速率最慢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号