首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将CdS量子点沉积在TiO2纳米多孔薄膜上得到TiO2/CdS阳极。采用电脉冲沉积方法将非晶结构TiO2薄膜覆盖在CdS/TiO2阳极。经过染料敏化,得到CdS量子点/染料共敏化TiO2阳极。这种共敏化阳极的光电转化效率比TiO2/CdS阳极及TiO2/N719的光电转化效率显著提高,光电化学性能结果表明,CdS量子点/染料共敏化可以极大提高阳极对光的吸收强度及范围,提高光电流密度,进而提高光电转化效率。  相似文献   

2.
采用光催化沉积的方法在TiO_2薄膜上沉积CdS量子点,TEM研究表明CdS量子点大小均一,直径为20nm左右。对CdS量子点制备过程进行了分析,发现生长原理为"原子原位生长过程"(Cd+S=CdS)。紫外-可见光测试结果表明CdS/TiO_2相对于TiO_2薄膜可以极大增强可见光的吸收率;将CdS/TiO_2组装成太阳能电池,电极表现出良好的光电性能,可以在太阳能电池等方面有很好的利用前景。  相似文献   

3.
采用水热法将CdS量子点沉积在TiO2纳米棒阵列上,在CdS量子点外表面包覆ZnS纳米层。经过ZnS纳米层包覆后,TiO2/CdS电极对可见光的吸收强度没有改变。光电化学测试结果表明,ZnS纳米层包覆可以极大提高TiO2/CdS量子点敏化太阳能电池的光电转化效率。原因分析是ZnS纳米层可以抑制电子-空穴对的重组。  相似文献   

4.
以三维锐钛矿TiO2微球为上层光散射层材料, 以商业纳米TiO2为下层连接材料, 采用刮刀法制备了一种新颖的双层TiO2薄膜, 并应用于量子点敏化太阳能电池(QDSSC)。其中, 石墨烯量子点(GQDs)采用滴液法引入, CdS/CdSe量子点采用连续离子层吸附法(SILAR)制备。采用场发射扫描电镜、透射电镜、X射线衍射、紫外-可见漫反射光谱及荧光光谱对样品进行表征。实验还制备了CdS/CdSe量子点敏化及石墨烯量子点/CdS/CdSe共敏化太阳能电池, 并研究了石墨烯量子点及CdS不同敏化周期及对电池性能影响。研究结果表明, 石墨烯量子点及CdS不同敏化周期对薄膜的光学性质、电子传输及载流子复合均有较大影响。优选条件下, TiO2/QGDs/CdS(4)/CdSe电池的光电转换效率为1.24%, 光电流密度为9.47 mA/cm2, 显著高于TiO2/CdS(4)/CdSe电池的这些参数(0.59%与6.22 mA/cm2)。这主要是由于TiO2表层吸附石墨烯量子点后增强了电子的传输, 减少了载流子的复合。  相似文献   

5.
采用化学气相沉积法将CdS、Bi2Se3量子点沉积在TiO2纳米棒阵列上,组装成光电极,采用XRD对CdS/TiO2、Bi2Se3/TiO2电极进行结构测试,并用SEM、TEM对3个电极进行形貌测试。Na2S/Na2SO3溶液中,测试几个光电极的光解水制氢能力,结果表明:Bi2Se3/CdS/TiO2电极产生的氢气量最大。进一步分析光电极的光电化学性能,得出Bi2Se3/CdS/TiO2电极的光电流是TiO2电极的20倍,是CdS/TiO2、Bi2Se3/TiO2电极的2倍,说明CdS量子点、Bi2Se3量子点共敏化TiO2电极表现出优良的制氢能力。  相似文献   

6.
采用电沉积法将CdS和CdSe纳米颗粒沉积在ZnO纳米线阵列上得到CdSe/CdS纳米颗粒共敏化ZnO光电极。利用X射线衍射、扫描电镜、透射电镜和能谱仪等对所得样品结构和形貌进行表征,并通过紫外-可见分光光度计和电化学工作站测试其光吸收性能和光电化学性能。结果发现,相对纳米颗粒单敏化CdS/ZnO光电极而言,纳米颗粒共敏化CdSe/CdS/ZnO光电极具有更好的可见光吸收性能,进而提高短路电流密度和光电转换效率分别到9.56mA/cm2和1.89%。  相似文献   

7.
采用导电PEN作为柔性基底,在上面沉积TiO_2多孔薄膜衬底;采用简单的化学浴法在TiO_2多孔薄膜上沉积CdS量子点作为光敏化剂,得到光阳极。在光阳极上用水热沉积法沉积CuSCN,作为固态电解质。将阳极与电解质组装成固态柔性太阳能电池,得到光电转化效率为1.54%。在分别经过30°、45°、60°弯折处理后,光电转化效率分别保持为原来的97%、98%、96%,表现出良好的柔性特征。  相似文献   

8.
《纳米科技》2008,5(2):78-78
近日,美国圣母大学(University of Notre Dame)~研究小组制备出世界上首例具有多种尺寸量子点的太阳能电池,在TiO2纳米薄膜表面以及纳米管上组装CdSe量子点,吸收光线以后,CdSe向TiO2放射电子,再在传导电极上收集,进而产生光电流。他们研究了2.3~3.7nm四种不同粒径的量子点,发现在505~580nm波段上具有不同的吸收峰。研究人员Prashant V.Kamat介绍说,TiO2纳米管上固定CdSe量子点能够形成规整的组装结构,不仅可以使电子有效地传输至电极表面,还能提高电池效率。长度为800nm的纳米管内外表面均可组装量子点,其传输电子的效率较薄膜高。研究发现,小的量子点能以更快的速度将光子转换为电子,而大的量子点  相似文献   

9.
采用丝网印刷法制备了SrCO3/TiO2复合薄膜电极;组装电池,研究了复合电极的光电性能。结果表明:敏化SrCO3/TiO2复合薄膜电极太阳能电池的短路电流密度、开路电压和填充因子比敏化TiO2电极电池均有增加,总的光电转换效率从3.01%提高到了3.53%,增加了17.3%。另外紫外光谱表明,SrCO3/TiO2复合薄膜电极吸附更多的染料。电化学阻抗谱研究表明,SrCO3/TiO2复合薄膜电极相对于空白TiO2电极有更小的阻抗,有利于电子在薄膜中的传输,提高了太阳能电池的性能。  相似文献   

10.
通过电化学沉积法以TiO2纳米管阵列(TNTs)为基底制备CdSe/TiO2异质结薄膜。研究TiO2纳米管阵列基底不同退火温度(200,350,450,600℃)对CdSe/TiO2异质结薄膜光电化学性能的影响。采用SEM,XRD,UV-Vis,电化学测试等方法对样品的微观形貌、晶体结构、光电化学性能等进行表征。结果表明:立方晶型的CdSe纳米颗粒均匀沉积在TiO2纳米管阵列管口及管壁上。TiO2纳米管阵列未经退火及退火温度为200℃时,为无定型态,在TiO2纳米管阵列上沉积的CdSe纳米颗粒数量少,尺寸小,异质结薄膜光电性能较差,光电流几乎为零。随着退火温度升高到350℃,TiO2纳米管阵列基底开始向锐钛矿转变;且沉积在TiO2纳米管上的CdSe颗粒增多,尺寸增大,光电化学性能提高。退火温度为450℃时光电流值达到最大,为4.05mA/cm^2。当退火温度达到600℃时,TiO2纳米管有金红石相出现,CdSe颗粒变小,数量减少,光电化学性能下降。  相似文献   

11.
染料敏化太阳能电池MO/TiO2复合薄膜的制备与表征   总被引:1,自引:0,他引:1  
用溶胶-凝胶法结合旋转镀膜法制备致密TiO2薄膜,采用丝网印刷技术制备多孔TiO2薄膜,采用液相沉积法制备ZnO/Ti02、MgO/TiO2复合薄膜。用x射线能谱仪、原子力显微镜、紫外-可见分光光度计对复合薄膜的化学组分、表面形貌、吸光性能等进行分析;组装电池,测定了电池性能。结果表明:ZnO/TiO2、MgO/TiO2复合薄膜具有较好的光电性能,染料敏化太阳能电池的短路电流、开路电压、填充因子、光电转换效率均得到提高。  相似文献   

12.
郝彦忠  王伟 《功能材料》2007,38(1):11-13
采用原位化学法在纳米结构TiO2电极上制备了量子点CdS(Q-CdS),并用电化学方法在TiO2/QCdS表面聚合3-甲基噻吩po1y(3-Methylthiophene)(PMeT).通过对PMeT修饰Q-CdS连接TiO2纳米结构膜的研究表明,PMeT和Q-CdS单独修饰纳米结构TiO2电极和PMeT修饰Q-CdS连接纳米结构TiO2电极的光电流产生的起始波长都向长波方向移动;一定条件下在可见光区光电转换效率均较纳米结构TiO2的光电转换效率有明显的提高;聚3-甲基噻吩(PMeT)与Q-CdS连接的纳米结构TiO2之间存在p-n异质结.在一定条件下p-n异质结的存在有利于光生电子/空穴的分离,提高了光电转换效率.  相似文献   

13.
研究了TiO2/CdSe纳晶复合薄膜电极的瞬态光电流、光电流作用谱、光吸收特性,结果表明TiO2/CdSe纳晶复合薄膜电极阻止了CdSe上光生电子和空穴的复合,从而提高了阳极光电流的响应,获得了较高增幅的稳态光电流.  相似文献   

14.
以水热法在氟掺杂的氧化锡透明导电玻璃(FTO)上制备的TiO2纳米棒阵列为衬底,通过连续化学水浴沉积(S-CBD)法将CdS量子点(QDs)沉积在TiO2纳米棒上,形成CdS/TiO2阵列复合材料.分别利用高分辨透射电子显微镜(HRTEM)、场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)和紫外可见光谱(UV-vis)等对样品的形貌、晶型以及光吸收性能进行了表征.结果表明,TiO2纳米棒阵列长度约为2.9μm,CdS QDs的尺寸大约在5~9 nm.随着沉积层数的增加,CdS QDs的厚度增加,同时伴随着光吸收边的红移.通过电流-电压特性曲线对其光电流-电压特性进行了分析,发现光电流和光电转换效率均呈现出先增大后减小的规律.100 mW/cm2的光照下,在S-CBD为7层时,光电流和开路电压最大值分别达到2.49mA· cm-2和1.10V,而电池的效率达到最大值1.91%.  相似文献   

15.
采用水热法制备硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO2), 并配制成浆料, 利用丝网印刷技术在FTO导电玻璃上制备B-S-TiO2薄膜; 用化学浴沉积(CBD)法制备了CdS量子点敏化B-S-TiO2薄膜电极, 并用X射线衍射(XRD)、电子显微镜(TEM)、元素分析能谱(EDS)和紫外-可见光谱对其进行表征分析; 结果显示: B/S共掺杂不会改变TiO2的晶型, 掺杂后的TiO2吸收边带发生明显红移, 吸收强度显著增强; 同样用化学浴沉积的方法制备NiS工作电极, 用改性的聚硫化物((CH3)4N)2S/((CH3)4N)2Sn)电解液, 组装CdS量子点敏化硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO2)太阳能电池, 并测试电池光电性能。测试结果表明, 在AM1.5G的照射下, 电池的能量转化效率(η)由3.21%增大到3.69%, 提高了14.9%, 电池获得高达 (Voc)1.218 V的开路电压和3.42 mA/cm2的短路光电流(Jsc), 以及高达88.7%的填充因子(ff)。  相似文献   

16.
采用共沉淀法制备出Fe3O4,使磁性颗粒表面羟基化,通过柠檬酸(CA)修饰制备得Fe3O4/CA。量子点CdSe/CdS是用三步法合成得到,并用巯基乙酸进行改性,再通过乙二胺偶联剂的作用,将量子点CdSe/CdS和Fe3O4连接。该微粒经过荧光分光光度计、荧光显微镜、透射电子显微镜(TEM)、能谱(EDS)和振动样品磁强计(VSM)的表征。结果表明:通过乙二胺的桥梁作用(静电吸附和氢键作用),量子点CdSe/CdS成功连接到了Fe3O4/CA表面,得到了磁性荧光双功能材料,该材料在药物分离、可视化,靶向治疗等方面的应用都具有很大潜力。  相似文献   

17.
采用水热法在FTO导电玻璃上生长TiO_2纳米棒阵列膜,然后在CdCl_2和Na_2S水溶液中循环浸泡反应制备CdS/TiO_2壳核式纳米结构,利用电化学方法于光敏层CdS中引入了贵金属Ag纳米粒子,并将Ag纳米粒子沉积于两层CdS纳米晶壳层之间形成三明治结构,以避免Ag纳米颗粒直接暴露成为光生电荷的复合中心。在不同CdS/Ag/CdS光敏层厚度的TiO_2纳米阵列中旋涂P3HT薄膜组装杂化太阳电池,探索了Ag纳米粒子沉积量对电池光吸收性能及光伏性能的影响。结果表明,在光敏层中适量电沉积Ag纳米粒子电池光电转换效率可以达到0.13%,与没有贵金属沉积的电池结构相比可以提高28%。  相似文献   

18.
测量了CdSe、CdSe/CdS/ZnS量子点的吸收光谱和发射光谱,讨论了两种不同量子点的光谱特性。改变核层内Cd^2+浓度以及壳层内Cd^2+/Zn^2+比例,分别测量多组CdSe/CdS/ZnS量子点发射光谱并计算量子产率,结果表明,Cd^2+浓度45mmol/L或者Cd^2+/Zn^2+比例为1/2时,CdSe/CdS/ZnS量子产率最高,从而确定最佳的Cd^2+定量参数。  相似文献   

19.
采用柠檬酸法制备了尖晶石型纳米晶CuAl2O4,将其添加到P25(degussa,TiO2)中,制备成CuAl2O4/TiO2薄膜光阳极,并组装成染料敏化太阳电池(DSSC),对其光电性能进行表征。结果表明:CuAl2O4的加入,电池性能得到提高;当CuAl2O4含量为2%(质量分数)时,与纯TiO2薄膜光阳极相比,光电转化效率提高了39.1%。  相似文献   

20.
以SeO2,CdCl2.5/2H2O,H2SO4为原料,采用三电极体系,分别在ITO玻璃和TiO2纳米管阵列基底上沉积CdSe薄膜。研究了不同沉积电压(-0.6,-0.7,-0.8,-0.9V,均相对于SCE)下制备的复合薄膜的晶体结构和微观形貌,并测试了其光电性能。结果表明:制备出的纳米粒子呈不均匀团聚状态;随沉积电压的增大,光吸收增强,光响应电流增大,在沉积电压为-0.8V时复合薄膜的光响应电流达到最大值,但此沉积电压下的薄膜容易剥落。综合考虑薄膜质量和光响应电流,沉积电压为-0.7V时制备的复合薄膜最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号