首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶液预聚体法合成毒性小、生物降解性能优异的医用聚碳酸酯基水性聚氨酯,硬段选用L-赖氨酸二异氰酸酯(LDI),软段选用聚碳酸酯二元醇(PCDL)。分别考虑了R值、扩链剂用量、预聚温度等因素影响。当异氰酸酯基∶羟基摩尔比为1∶1.5,6%(wt,质量分数)的扩链剂1,4-丁二醇、采用80℃的预聚温度时合成的聚碳酸酯基水性聚氨酯性能最优,拉伸强度为52.5MPa,水解降解60d失重率为39%,降解性能优异,在生物医用材料领域具有很好的应用及推广价值。  相似文献   

2.
采用4,4-二环己基甲烷二异氰酸酯(HMDI)与亲水性多元醇(PEG)合成预聚体,进一步与混合扩链剂反应,制备吸水膨胀聚氨酯弹性体。通过材料力学测试机和硬度计等仪器对拉伸强度、断裂伸长率、吸水率和硬度等性能测试。结果表明,PEG相对分子质量为2000,合成预聚体的NCO质量分数为9%,混合扩链剂n(JJ-125)∶n(TMP)=5∶5,(JJ-125为磺酸盐类亲水扩链剂)R值为1.05,制备出的吸水膨胀聚氨酯弹性体综合性能最优。  相似文献   

3.
以聚碳酸酯二元醇为软段,二苯甲烷二异氰酸酯(MDI)为硬段,采用不同链长及同分异构的扩链剂合成了聚碳酸酯二醇型聚氨酯弹性体(PCDL-PUE),通过傅里叶变换红外光谱、差示量热扫描分析、动态机械性能分析等多种方法,对样品进行表征。结果表明:扩链剂链长越短,合成的聚氨酯综合性能越好,同时带有支链的扩链剂合成的聚氨酯具有软段结晶。  相似文献   

4.
热处理对赖氨酸乙酯扩链聚氨酯性能的影响   总被引:1,自引:1,他引:0  
以1,6-六亚甲基二异氰酸酯(HDI)为硬段,聚碳酸酯二元醇(PCDL)为软段,赖氨酸乙酯盐酸盐(Lys-OEt)为扩链剂合成了一种新型聚碳酸酯型聚氨酯弹性体,并制成聚氨酯膜,在不同温度和时间下对聚氨酯进行退火热处理.采用FT-IR、~1H-NMR对聚氨酯进行结构分析;热处理前后,通过AFM、XRD和力学测试仪对聚氨酯进行性能测试.结果表明:热处理使赖氨酸乙酯扩链聚氨酯微相分离的程度变大,结晶性能更好,力学性能提高,弹性回复率增大.  相似文献   

5.
以聚醚多元醇、聚丙二醇(PPG)和2,4-甲苯二异氰酸酯(TDI)为原料,通过添加催化剂二月桂酸二丁基锡和扩链剂1,4-丁二醇制备了固化快、强度适中、延展性良好的聚氨酯电子封装胶。利用傅里叶变换红外光谱仪、热重分析仪分析了聚氨酯电子封装胶的结构和热稳定性能,考察了TDI与PPG摩尔比、聚醚多元醇与聚氨酯预聚体质量比、催化剂、扩链剂及其用量对聚氨酯电子封装胶力学性能及固化速率的影响。结果表明:在PPG相对分子质量为1000、n(TDI)∶n(PPG)=2∶1、m(聚醚多元醇)∶m(聚氨酯预聚体)=0.6、扩链剂1,4-丁二醇用量为3%时,聚氨酯电子封装胶的拉伸强度达到5.8MPa,断裂伸长率大于900%;催化剂二月桂酸二丁基锡用量为0.3%,固化时间小于40min时,聚氨酯电子封装胶耐热性能良好。  相似文献   

6.
采用异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、聚四氢呋喃(PTMG)为原料制备聚氨酯预聚体,分别以乙二醇(EG)、乙二胺(EN)和正丁胺(n-butylamine)为扩链剂制备了水性聚氨酯皮革涂饰剂,研究了该涂饰剂所成膜的力学性能、断裂伸长率和吸水性。结果表明,以正丁胺为扩链剂制备的水性聚氨酯膜的断裂伸长率最好,高达1454%;其玻璃化转变温度可达-82℃,耐水性也比用其它两种扩链剂合成的产品好。  相似文献   

7.
以聚酯多元醇聚己二酸-1,4-丁二醇酯(PBA)为软段,二苯基甲烷二异氰酸酯(MDI)和扩链剂1,4-丁二醇为硬段,二月桂酸二丁基锡和三亚乙基二胺为催化剂合成了相对分子质量分布合理、软化点高、粘接强度大、热稳定性好的热塑性聚氨酯热熔胶。通过对合成工艺、异氰酸酯MDI、聚酯多元醇和扩链剂用量的研究,探讨了其软硬段的组成、结构、异氰酸酯指数(R)等对热塑性聚氨酯热熔胶性能的影响,结果得出,聚氨酯预聚体合成温度在(70±5)℃,反应时间约2h,扩链反应时间30 min,在100~110℃温度下熟化2~3 h,当R为1.02(-NCO/-OH摩尔比),扩链剂的用量为1∶0.7(多元醇/1,4-丁二醇摩尔比)时,合成的聚氨酯热熔胶具有合理的相对分子质量(珚Mn为3.91×104,珚Mw为7.61×104)及相对分子质量分布(1.94)、较高的软化点(139℃)、优异的物理性能与粘接强度(25.66 MPa)。  相似文献   

8.
以聚四氢呋喃醚二醇(PTMG)、聚醚多元醇(EP3600)、环己基甲烷二异氰酸酯(HMDI)为主要原料,以1,4-丁二醇(BDO)为扩链剂,采用半预聚体法合成了一系列聚氨酯弹性体。研究了多元醇配比、预聚体异氰酸根(NCO)含量、扩链剂用量、异氰酸根指数对聚氨酯弹性体性能的影响。结果表明:数均分子量为1000的PTMG(PTMG1000)与EP3600摩尔比为4∶6,预聚体中NCO质量分数为9.5%,BDO质量分数为2%,异氰酸根指数为1.10时,可操作性最好,制备的聚氨酯弹性体力学性能最佳。  相似文献   

9.
采用聚酯多元醇(PEA)和聚醚多元醇(PTMG)为混合软链段,考察了相同原料组成而不同制备方法对聚氨酯材料力学性能及动态行为的影响。方法一:将PEA和PTMG混合后制成预聚体,用扩链剂(MOCA)扩链后合成聚氨酯;方法二:将PEA和PTMG分别制成备预聚体,按照一定比例取出2种预聚体,再按各自的扩链系数加入MOCA,反应数分钟后将两者混合制备PEA/PTMG混合软链段聚氨酯。动态力学分析表明,不同制备方法对材料的耗能模量及玻璃化转变温度有较大影响,也证实了按照方法二制备的聚氨酯具有多微区结构。论文的研究模式对制备多种不同微区共存的聚氨酯是有益的。  相似文献   

10.
从网络结构角度出发,设计以聚乙二醇单甲醚(mPEG)与甲苯2,4-二异氰酸酯(TDI)反应所制得预聚体为悬挂链,聚酯二元醇和TDI反应制得预聚体为弹性链,超支化H201作为交联扩链剂制备无规网络结构的聚氨酯弹性体。采用动态力学分析仪、原子力显微镜以及正电子湮没寿命谱等表征其结构与性能,从自由体积、微相分离、氢键作用等结构与性能之间的关系深入探讨聚氨酯宽温域高阻尼机理。研究结果表明,随着悬挂链含量增加,R值(n(-NCO)/n(-OH))减小,聚氨酯的微相分离程度降低,相容性增加,氢键作用增强,自由体积增大,聚氨酯的有效阻尼(tanδ≥0.3)温域可达175℃(-60~115℃),为一种基于网络结构设计的新型聚氨酯阻尼材料。  相似文献   

11.
以聚碳酸酯二醇(PCDL),六亚甲基二异氰酸酯(HDI)为预聚原料,3,3′-二氯-4,4′-二氨基二苯甲烷(MOCA)为扩链剂,两步法合成了一系列不同硬段含量的聚氨酯脲(PUU)弹性体。采用傅里叶变换红外光谱仪(FTIR)、强力拉伸仪等测试手段对其结构特征和材料的力学性能以及耐水性能进行了研究。结果表明,随着硬段含量的增加,材料的拉伸强度先增大后减小最后又增大,而断裂伸长率和吸水率呈现相反的趋势,并以硬段含量47%为分界点。  相似文献   

12.
以异佛尔酮二异氰酸酯(IPDI)与聚四氢呋喃醚二醇(PTMG-2000)为原料,二羟甲基丙酸(DMPA)为扩链剂,三乙胺为中和剂制备聚氨酯预聚体。采用碱水解法水解明胶,制备胶原蛋白水解液,作为后扩链剂,在乳化分散的同时进行链增长,得到胶原蛋白改性水性聚氨酯。研究胶原蛋白改性水性聚氨酯合成过程中R值、DMPA用量对其性能的影响,采用红外(FT-IR),差热分析(DSC)等分析对制备的胶原蛋白改性水性聚氨酯胶膜进行分析。在R值为1.30,DMPA用量为0.065mol条件下,制得的胶原蛋白改性水性聚氨酯膜的各项性能较好,结晶趋势增加,耐水性得到改善,平均粒径68.33nm,延伸率为554.5%,抗张强度为5.51N/mm。  相似文献   

13.
蒋禹旭  成煦  伍燕  杜宗良 《功能材料》2013,44(11):1538-1542
为了更充分地了解微量水对聚氨酯预聚反应及预聚体结构的影响,用一步法首先合成了聚氨酯初始预聚体,然后研究了微量水及扩链温度等对聚氨酯预聚体的特性粘数、在THF中的溶解性和分子量分布等的影响,采用FT-IR对水扩链预聚体的聚集态结构进行了初步的研究。研究结果表明,水和—NCO基团反应生成聚脲结构,表现在聚氨酯硬段间的氢键作用增强,而硬段与软段间的氢键作用力减弱。微量水的存在可以对聚氨酯预聚体起到扩链作用,但随水量的增加预聚体会生成交联结构,产生不溶性凝胶。聚合温度的提高会加速聚脲结构的形成。  相似文献   

14.
TBCL对PLA及LA/CL共聚物预聚体的扩链反应   总被引:1,自引:0,他引:1  
以乳酸或乳酸及ε-己内酯,与二元醇如丁二醇或一缩二乙二醇在催化剂的存在下缩聚,合成端羟基聚乳酸预聚体(HO-PLA-OH)或乳酸-ε-己内酯共聚物预聚体(HO-P(LA/CP)-OH)。以对苯二甲酰双己内酰胺(TBCL)为扩链剂,研究了扩链温度、预聚体结构、扩链剂/预聚体配比、扩链时间等对扩链反应的影响。结果表明,在扩链温度为150℃,酸值为0.9、黏均分子量为1120的(HO-P(LA/CP)-OH)预聚体,在扩链剂/预聚体的摩尔比为1.2时,经2 h扩链反应后,黏均分子量达到8630。并采用凝胶渗透色谱法对扩链前后聚合物的分子量变化进行了表征。  相似文献   

15.
以聚己二酸乙二醇-丙二醇酯二醇(PEPA)为软段,分别采用4种二胺扩链剂和3种二异氰酸酯为硬段,通过预聚体法合成了一系列不同硬段结构和含量的聚氨酯脲弹性体,并采用红外光谱、热失重分析、差示扫描量热和拉伸测试等手段,研究了硬段类型及含量对聚氨酯脲性能的影响。结果表明,在软段结构一致,硬段含量接近的情况下,兼具柔性和刚性的硬段有助于提升聚氨酯脲的力学性能、热学性能和微相分离程度。几种二胺扩链剂和二异氰酸酯中,由二苯基甲烷二异氰酸酯(MDI)和4,4'-二氨基二苯醚(ODA)构成的硬段性能最佳;在软、硬段结构一致的情况下,硬段含量对聚氨酯脲性能影响明显。随着硬段含量增加,聚氨酯脲的拉伸强度、微相分离程度先增大后减小,5%热失重温度和断裂伸长率逐渐下降。当PEPA/MDI/ODA摩尔比为1∶0.5∶0.5(硬段含量31.7%),聚氨酯脲拉伸强度达51.5 MPa,断裂伸长率为709%,5%热失重温度为282.7℃,性能最佳。  相似文献   

16.
以聚己内酯二元醇为软段、异佛尔酮二异氰酸酯和二乙烯三胺扩链剂为硬段合成了水性聚氨酯乳液,研究了聚氨酯乳液对纸张的表面施胶性能,并优化了实验合成工艺。研究表明,当n(NCO)/n(OH)=1.6,w(DMPA)=3.4%,w(DETA)=0.5%时,此水性聚氨酯/聚脲乳液具有优异的表面施胶性能。以质量分数为1%的聚氨酯进行表面施胶时,施胶度达74s,湿强度达36.02%,耐折度达125次,并通过红外光谱(FT-IR),热重分析(TG)及扫描电镜(SEM)对聚合物结构及膜性能进行了表征。FT-IR表明,扩链剂的加入使聚合物形成了聚脲结构,使膜的韧性得到提高,TG表明,经扩链剂改性的聚氨酯乳液具有优良的热稳定性,SEM表明经聚氨酯乳液施胶后的纸张表面纤维间的界面变得模糊,纸张表面的纤维结合更加紧密。  相似文献   

17.
新型可紫外光固化水性聚氨酯的制备与表征   总被引:3,自引:2,他引:1  
以异佛尔酮二异氰酸酯(IPDI)、聚酯二元醇Pol-1256、二羟甲基丙酸(DMPA)为主要原料,采用预聚体法制备了水性聚氨酯预聚体,然后用自制的扩链剂对该预聚体进行扩链,并用丙烯酸羟乙酯(HEA)对扩链后的预聚体进行封端,最后中和乳化,制备了高紫外光(UV)固化基团含量的可UV固化水性聚氨酯乳液。采用FTIR对产物的结构进行了鉴定,利用旋转流变仪对分散体的流变性能进行了表征,通过TGA分析了UV固化膜的耐热性能,并对其拉伸性能进行了测试。研究结果表明:所制扩链剂符合预期结构特征,所得产物符合可UV固化的水性聚氨酯结构特征;乳液呈现出剪切变稀的特征,属于假塑性流体;UV固化膜具有良好的耐热性能,同时具有较高的断裂伸长率和良好的拉伸强度。  相似文献   

18.
GAP/MDI/DEG含能热塑性弹性体的合成与性能   总被引:1,自引:0,他引:1  
以一缩二乙二醇(DEG)为扩链剂采用熔融预聚二步法合成了一种聚叠氮缩水甘油醚(GAP)基含能热塑性聚氨酯弹性体(GAP/MDI/DEG-ETPE)。采用凝胶渗透色谱(GPC)、红外光谱(FT-IR)、动态热机械分析(DMA)、X射线衍射(XRD)分析和力学性能测试技术对合成的ETPE进行了性能表征。结果表明,当-NCO/-OH摩尔比(R值)为0.98,后熟化条件为30℃1d,90℃3d,硬段质量分数为35%时,ETPE的数均相对分子质量为84530,重均相对分子质量为202400,分散指数为2.39,且具有较佳的力学性能和动态力学性能,其拉伸强度为14.6MPa,断裂伸长率为414%,玻璃化温度为-29.6℃。  相似文献   

19.
以异佛尔酮二异氰酸酯(IPDI)、聚碳酸酯二醇(PCDL)、二乙醇胺(DEA)、蓖麻油(C.O.)、二羟甲基丙酸(DMPA)为原料,二丁基二月桂酸锡(DBTDL)为催化剂,合成了单端封闭的聚氨酯预聚体,然后将其接枝到一代树枝状大分子聚酰胺-胺(1G PAMAM)上,合成了一种新型树枝状水性聚氨酯。通过单因素分析法优化出最佳的合成条件:DBTDL的用量为0.08%,预聚反应温度为80℃,扩链反应温度为75℃,DMPA用量为6%,产物具有良好的水分散性。利用红外光谱(FT-IR)和热失重分析仪(TGA)对产物进行了表征,并用X射线衍射(XRD)分析了胶膜的结晶度,还对胶膜的耐水性能和拉伸强度进行了测试,结果表明,制备的树枝状水性聚氨酯的吸水率为12.1%,拉伸强度为16.2 MPa,热分解温度为205℃。  相似文献   

20.
对苯二酚-双(β-羟乙基)醚扩链聚醚型聚氨酯的研究   总被引:2,自引:0,他引:2  
分别用对苯二酚 -双 (β-羟乙基 )醚 ( HQEE)和 1 ,4-丁二醇 ( BDO)作扩链剂 ,采用本体一步法合成几种不同硬段含量 ( 0~ 50 % )的二苯基甲烷 - 4,4′-二异氰酸酯 /聚四亚甲基醚二醇的聚醚型聚氨酯 ,借助 DSC和 IR等手段分析该聚氨酯的结晶性以及氢键行为 ,最后认为 HQEE扩链聚醚型聚氨酯的微相分离程度较高 ,这是由其形成的硬链段刚性较强所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号