首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对我国高端制造业对高精度空间六自由度测量系统的迫切需求,提出一种面向激光跟踪测量的基于单目视觉的大范围全自动高精度姿态测量方法。阐述了面向激光跟踪测量的姿态测量系统构成、合作靶标硬件设计,并建立了姿态测量数学模型;其次,分析了自适应清晰成像的姿态测量模块特性,基于光学畸变模型与张正友标定法建立了实时相机成像模型,动态校正特征点像素坐标模型,提升了特征点的提取精度;之后,结合合作靶标几何特性、EPnP算法、Soft-POSIT算法提出一种改进的姿态测量方法,建立了姿态测量系统的自动监测纠错机制,实现测量范围内任意动态位姿的自动测量。最后,利用二维精密转台搭载合作靶标对激光跟踪测量的姿态测量系统进行精度测试。实验结果表明:在3~10 m,方位角/俯仰角为±30°、滚动角为±180°内,适配有14个特征点的合作靶标,姿态测量精度优于0.049°;适配有10个特征点的合作靶标,姿态测量精度优于0.065°。此方法普适性强,对合作靶标特征点布局约束较小,可以满足高端制造业激光跟踪测量的精密测量需求。  相似文献   

2.
针对大型精密工程现场姿态测量精度评定的需求,提出了一种利用长度计量基准溯源姿态测量结果的姿态角现场精度 评定方法。 首先,介绍了激光跟踪姿态测量系统的基本组成及测量原理;其次,基于六自由度并联机构的正向运动学研究,建立 了空间距离与靶标姿态之间的数学模型,并通过蒙特卡洛法仿真分析距离约束测量精度、控制场布局以及系统工作距离等因素 对评定模型精度的影响;最后,搭建实验平台,利用精密转台的相对转动量作为角度基准,对本文研究方法的可行性进行了验 证。 结果表明:当距离约束测量精度为 0. 038 mm,控制场大小为 1 400 mm×1 400 mm 时,在-20° ~ 20°的姿态角变化范围内,评 定模型方位角精度为 0. 055°,俯仰角精度为 0. 058°。 本文研究方法避免了基于角度基准评定方法中较为严格的坐标系配准要 求,能综合反映测量系统现场使用状态,可为六自由度激光跟踪测量系统中姿态角现场精度评定方法提供参考。  相似文献   

3.
针对大型装备建造、航空航天、汽车等领域对姿态测量技术的需求,提出一种以激光跟踪设备为基站,视觉测量与激光准直技术相结合的姿态测量方法。首先对测量模型中涉及的坐标系进行了定义,其次建立了激光跟踪设备坐标系与视觉坐标系之间的转换关系,通过视觉测量中纵向投影比不变的约束实现横滚角的测量,在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量。最后在实验室环境下搭建了姿态测量验证实验平台,将靶标装载在三自由度摇摆台上,利用六轴绝对关节臂姿态角测量值作为基准进行比对,实验证明,在测量距离为2.5 m处,姿态角测量范围为-20°~20°时,姿态角测量误差绝对值可控制在2°内。  相似文献   

4.
为了满足日常生活、生产中对姿态测量的需求,针对嵌入式系统的特点,设计了一种运算量较小的姿态测量算法。直接使用加速度计和地磁传感器来计算姿态角,然后利用卡尔曼滤波融合陀螺仪的输出,达到误差补偿和弥补加速度计动态性能差的目的。为了避免俯仰角和横滚角误差对航向角计算的影响,还设计了两步更新,使用一步更新后的俯仰角和横滚角来计算航向角。实验结果表明,姿态测量的精度满足要求,同时也达到了减少运算量的要求。  相似文献   

5.
《机械科学与技术》2016,(7):1096-1101
根据双轴倾角传感器的测量原理,建立了姿态角的测量模型。针对该测量模型,分别研究了无误差和误差下的姿态角的求解模型,并通过坐标变换算法,建立了含误差项的姿态角的求解模型。针对该模型的误差项,讨论了双轴倾角传感器姿态角测量的标定算法。在±4°范围内,通过实验对该标定算法进行了验证。实验结果表明,经修正,双轴倾角传感器的双轴标定精度由修正前的0.118°提高到0.012 46°,该标定算法使双轴倾角传感器的标定误差减小了一个数量级。该标定算法简单、快速,可以满足诸多场合对于姿态角测量的0.03°标定精度要求。  相似文献   

6.
为了提高单频激光干涉仪正交信号相位细分辨向的可靠性与重复性,本文在正交信号Heydemann误差模型和数字信号处理技术的基础上,提出一种结合误差修正和相位细分辨向技术的正交信号高精度误差补偿算法。该算法采用基于最小二乘法的矩阵运算计算正交误差补偿参数初值,通过迭代运算进一步提高补偿精度,并对修正后的信号构建了基于相位的细分辨向算法。最后通过MATLAB软件对该算法进行了验证。实验结果表明,上述算法可实现对正交信号误差的精确补偿,使测量精度可达亚纳米甚至皮米数量级,从而有效提高测量信号的解调精度。  相似文献   

7.
针对捷联惯性导航系统(SINS)的安装误差影响管道地理坐标测量精度的问题,提出SINS安装误差标定算法,推导了SINS安装误差动态传递模型,将SINS的俯仰角和航向角安装误差作为状态变量,建立一种新的SINS/里程仪/管道磁标点GPS组合导航模型,利用容积卡尔曼滤波实现俯仰角和航向角安装误差的标定。实验结果表明,该方法安装误差的估计精度为0.2'~0.6'。经误差补偿后,1 km长程管道地理坐标高度测量精度为1.59E-3,水平测量精度可达1.07E-3,能够满足长距离管道地理位置测量精度的工程需要,具有一定的实用性。  相似文献   

8.
李春艳  乔琳 《光学精密工程》2018,26(6):1306-1313
为了在一定平移范围内实现快速空间测角系统的测量功能,对一定入射及方位角的光束经过Wollaston棱镜后引起的两出射光束的偏振非正交及进而引起的系统测角误差进行了研究。首先,建立系统坐标系模型,采用光线追迹法,并利用坐标变化的方式,对任意入射角和方位角下Wollaston棱镜的偏振非正交进行了理论推导。接着,对偏振非正交与入射角的关系及它对系统测角精度的影响进行了Matlab仿真。仿真结果表明,随着偏振非正交及空间方位角的变大,系统测量误差变大,且Wollaston棱镜偏振非正交对系统测角精度的影响较大;当方位角为3°,偏振非正交为10′时,测角误差为30″。最后,通过分析偏振非正交的产生原因,改进了原有光源扩束系统,改善了偏振非正交对系统测角精度的影响,减小了测角误差。本文的研究成果对优化系统结构并进一步提高系统性能具有一定的指导意义。  相似文献   

9.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

10.
俯仰角组合测量系统的设计   总被引:1,自引:1,他引:1  
利用准直激光、单轴倾角仪和CCD摄像机建立了一种俯仰角组合测量系统以提高俯仰角测量的精度和稳定性.首先,给出了俯仰角组合测量模型,基于坐标旋转算法和迭代方法研究了俯仰角的组合测量原理.然后,采用蒙特卡罗法对影响组合测量系统精度的各个因素进行了全局灵敏度分析.结果表明,与目前工程测量中普遍采用的倾角仪直接测量俯仰角法相比...  相似文献   

11.
基于递推最小二乘法的地磁测量误差校正方法   总被引:5,自引:0,他引:5       下载免费PDF全文
龙礼  黄家才 《仪器仪表学报》2017,38(6):1440-1446
针对弹体地磁测量容易受到各种误差影响而导致地磁姿态测量精度降低的问题,在分析自身误差和环境误差的基础上,对椭球模型的地磁测量误差进行建模,采用最大似然估计解算静态误差补偿参数,以解算结果为初值,通过递推最小二乘法推到补偿参数的实时更新算法,综合以上研究,形成用于地磁测量误差补偿的在线组合校正方法。仿真及实验结果表明,在接近盲区方向的最大姿态角误差小于5°,在线组合校正能够保证姿态检测系统在不同射向条件下的精度。  相似文献   

12.
基于误差传播理论的PnP问题姿态精度分析   总被引:1,自引:0,他引:1  
提出了一种在辨识一组典型特征点误差关系的基础上,建立间接测量值与直接测量值之间的最有利函数关系,并根据误差传播理论综合其他特征点的误差影响,最终获得完整的方位、俯仰和倾斜角误差数学模型的PnP问题误差分步分析新方法。以P4P问题研究为例,推导得到了单目视觉测量中相关参数和变量的误差函数解析式,揭示了影响姿态测量精度的误差规律。经P4P姿态解算仿真,验证了误差数学模型的正确性,以及基于误差传播理论的误差分步方法的有效性。分析误差数学模型可以看出:在单目视觉测量参数确定的条件下,方位角测量误差与方位角值无关,与相机高度和合作标志尺寸的比值成正比,在较大范围内俯仰和倾斜角变化对方位角测量误差影响小;俯仰/倾斜角的测量误差与俯仰/倾斜角值有关,与相机高度和合作标志尺寸比值的平方成正比;方位角测量误差小于俯仰/倾斜角测量误差。给出的分析方法和误差解析数学模型对单目视觉测量系统设计有指导作用。  相似文献   

13.
为了实现对空间失效卫星、空间碎片等非合作目标,尤其是具有自旋运动特性的目标进行在轨服务或者离轨清除,需要精确完成追踪飞行器与目标飞行器之间的相对姿态测量。首先,以逆深度参数化表示相机在世界坐标系下的坐标值、高低角、方位角和深度信息,可以有效解决小视差情况下的单目视觉姿态估计。其次,建立了相机相对于非合作目标的运动模型和测量模型。最后,基于单点随机抽样和扩展卡尔曼滤波实现了相机和目标之间的相对运动姿态估计。实验结果表明:对于三轴稳定目标,接近过程中姿态测量精度约为0.5°;对于匀速慢旋目标,相对角度误差约为3.5%,平均角速度误差约为0.1°/s。可以满足工程上空间非合作目标相对姿态测量的使用需求。  相似文献   

14.
为了在一定平移范围内实现快速空间测角系统的测量功能,对一定入射及方位角的光束经过Glan-Taylor棱镜后导致的非均匀分布的消光比参数引起的系统测角误差进行了研究。首先,建立系统坐标系模型,采用光线追迹法及偏振光的琼斯矩阵描述方式,对格兰-泰勒棱镜消光比参数引起的测角误差进行了理论推导;接着,结合一定入射及方位角下非均匀分布的消光比参数,运用Matlab软件进行了仿真分析。最后,通过搭建实验平台,利用平移接收单元来模拟不同的入射方位及角度变化;根据实验值与仿真结果的对比分析,得出非均匀分布的消光比对测角精度的影响。结果表明,在一定的出射光范围内,入射角是影响消光比非均匀分布进而影响系统测角精度的主要因素,当方位角为90°时,系统测角误差较小;全方位角范围内系统测角误差随入射角的增大而显著增大,由此验证了理论分析的正确性。该研究成果对优化测角系统结构并进一步提高系统性能具有一定的指导意义。  相似文献   

15.
旋转导向钻井工具中姿态校正方法的校正点本身包含各种系统误差,会引入校正矩阵误差,是近垂直姿态下姿态角解算精度低的原因之一.平均均衡校正方法(ABC)可补偿校正矩阵误差,但整体误差并不均匀.以等分角度间距设计校正点,建立一种等角距均衡校正(EABC)模型,推导校正矩阵误差表达式,研究其引起的姿态角误差特征.对多组近垂直姿态的测试数据分别进行传统校正、平均均衡校正和等角距均衡校正,结果表明:等角距均衡校正后,井斜角误差平均值均小于0.012°,井斜角误差峰峰值均小于0.027°;工具面角误差平均值均小于0.008°,工具面角误差的峰峰值和标准差分别降低到平均均衡校正的54%~95%和40%~63%,进一步提高垂直小井斜井段的姿态解算整体精度。  相似文献   

16.
采煤机截割高度的测量及其误差分析是实现综采工作面自动化的一项重要研究内容.本文针对机身姿态传感器和摇臂摆角传感器测量方案、机身姿态传感器和调高油缸位移传感器测量方案,分别建立了采煤机截割高度测量模型.利用函数误差公式,推导了测量误差模型.以MG1000/2660-WD型采煤机为例,分析了截割高度测量误差分别随俯仰角、摇...  相似文献   

17.
郭爱波  王宏  郑兴文  李木岩 《机电工程》2014,31(9):1122-1126
针对人体目标位姿的追踪问题,对二维激光扫描仪的工作原理进行了归纳,对所测取数据的分析算法进行了研究,设计了一种基于激光图像扫描的新型算法,利用C语言与Matlab混合编程,通过对人体目标肩部截面进行椭圆拟合,实时测取了运动人体目标的距离、角度和方位信息,并通过Matlab GUI显示.二维激光扫描仪通过旋转的光学部件发射光脉冲,形成了二维的扫描面,以实现区域扫描及轮廓测量的功能.研究结果表明,利用激光扫描仪测取的人体目标的位置信息与真实的人体目标的位置信息相比基本吻合,距离范围为0m~4m,距离精度优于0.05 m,角度范围为240°,角度跟踪精度优于2°,方位范围为360°,方位精度最高1 °,该算法可用于需要对人体目标进行实时追踪的工程应用中,例如用于对人体目标实时跟随的移动平台或机器人中.  相似文献   

18.
基于激光位移传感器的面角度测量技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对面角度现场测试需求,利用激光位移传感器的漫反射测量特性,搭建了面角度非接触测量装置,提出了一种结合三坐标测量机和位置敏感探测器对激光位移传感器进行空间坐标化标定的方法,从而构建出精确的面角度测量模型;采用蒙特卡洛法对面角度非接触测量装置的不确定度进行评定,在±25°测量范围内其结果为U=0.044°~0.046°(k=2);通过性能验证试验、重复性试验和稳定性试验对装置的性能指标进行考核,在±25°测量范围内其绝对测量示值误差不超过0.036°,重复性不超过0.004°,稳定性不超过0.021°;实验结果表明该基于激光位移传感器的面角度非接触测量装置准确可靠,具备开展面角度现场测试应用的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号