首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以兰州糟肉为研究对象,分析其加工过程中挥发性风味物质的变化规律。采用固相微萃取-气相色谱-质谱(SPME-GC-MS)联用结合电子鼻技术,分别对原料期、炖煮期、腌制期、蒸煮期4个阶段的挥发性风味物质进行分离鉴定,并通过相对气味活度值(ROAV)法确定关键挥发性风味物质。结果表明:兰州糟肉加工过程中共鉴定出84种挥发性风味物质,4个阶段兰州糟肉挥发性风味物质的种类分别为37,23,23,40种,总相对含量呈现先增加后降低的趋势,在腌制期达到最大。4个阶段共有的风味化合物为5种,分别为四氯乙烯、甲苯、正己醛、2-正戊基呋喃和乙腈。相对气味活度值显示兰州糟肉加工过程中醛类、醇类物质的关键挥发性风味物质占主导地位,对兰州糟肉的风味贡献较大。电子鼻测定结果显示烷烃类、硫化合物风味活性较强。腌制期对兰州糟肉风味的影响较大。  相似文献   

2.
以白鲢为原料,运用固相微萃取与气-质联用技术(SPME-GC/MS),分析腊鱼加工过程鱼肉中的挥发性成分的变化,以探讨腊鱼风味形成的机理。结果表明,不同加工阶段鱼肉中的挥发性成分组成差异明显。原料鱼主要挥发性物质为烃类,而腌制过程中,鱼肉中醇类及酮类物质含量有所增加;而在干燥阶段,醛类物质则有明显增加,最终成品的挥发性成分以醛类(53.66%)和烃类(30.01%)为主。在腌制前、腌制后、干燥期和成品等4个鱼肉样品中分别检测到挥发性物质29种、39种、47种、42种,腊鱼特征风味的形成主要发生在腌制和干燥阶段。醛类是腊鱼中最重要的挥发性成分,可作为腊鱼风味品质评价指标。  相似文献   

3.
以湖南腊肉为研究对象,分析加工过程中挥发性风味物质的变化规律。利用固相微萃取-气相色谱-质谱联用仪,分别对腌制后、一阶段烘干后、二阶段烘干后和烟熏后的湖南腊肉4 个阶段的挥发性风味成分进行定性和半定量分析。结果表明,湖南腊肉样品加工过程中共鉴定出78 种挥发性风味物质,腌制后、一阶段烘干后、二阶段烘干后和烟熏后4 个加工阶段分别鉴定出37、52、55 种和67 种挥发性风味成分,主要为醛类、酯类、酮类和酚类。腌制后样品的挥发性风味化合物较少,且含量不高;烘干时酮类物质种类增多,醛类和酯类物质的含量大幅增加,酸类物质含量也有增长的趋势,而醇类物质变化不大;烟熏后酚类物质的种类和含量变化最大,酚类物质的含量由最初的5.97 μg/kg增加到1 019.33 μg/kg。  相似文献   

4.
采用顶空固相微萃取结合气相色谱-质谱联用技术,研究黑山羊后腿肉在成熟过程中挥发性风味物质的变化。结果显示:在黑山羊宰后成熟过程中,共检测出6 类共77 种挥发性风味物质,分别为烃类、醛类、醇类、酮类、芳香族和杂环类化合物。其中醛类物质所占的比重最高,其次为烃类、醇类、芳香族化合物,而酮类、杂环类化合物所占的种类较少且含量也较低。在不同成熟时间点处,6 类挥发性风味物质的检出种类及相对含量存在显著差异,其中以72 h检出物质种类较多,各挥发性物质总相对含量最高。结果表明,宰后成熟工艺有利于羊肉风味的改善,且72 h为羊肉的最佳成熟时间点。  相似文献   

5.
外源酶对发酵羊肉香肠挥发性风味物质的影响   总被引:2,自引:0,他引:2  
研究外源酶对发酵羊肉香肠挥发性风味物质的影响.通过顶空固相微萃取-气相色谱-质谱联用技术测定发酵羊肉香肠中的挥发性风味物质.结果表明,发酵羊肉香肠中的主要挥发性风味物质为醛类、烃类、醇类和酯类等.对照组和试验组发酵香肠挥发性风味物质的种类和含量存在着一定的差别.  相似文献   

6.
采用固相微萃取-气相色谱-质谱联用技术(SPME-GC-MS),结合相对气味活度值(ROAV)、主成分分析(PCA),对四川省一种浅发酵香肠在加工过程中挥发性风味物质的变化进行了分析。结果表明:香肠从鲜肉(0 d)至后发酵期(12 d)合计6个加工阶段共鉴定出超过6个类别共51种挥发性成分,其中醛类化合物对风味的影响最大,其次为醇类和酯类;采用ROAV法分析得到18种关键挥发性风味成分(ROAV≥1),3 d前香肠中关键呈香物质种类及贡献程度都随加工时间延长而迅速增加;结合主成分分析法对这18种特征风味物质进一步进行分析,结果显示,6~12 d风味无明显变化,且主要以(E)-2-壬烯醛、(E)-2-癸烯醛为特征风味物质;风干发酵后期(6~12 d)挥发性风味物质种类和含量以及主体风味趋于稳定,而对补充产品风味的丰满度更有利。  相似文献   

7.
采用气相色谱-质谱联用对芫根泡菜发酵过程中挥发性风味物质的变化进行检测和分析。结果表明:新鲜芫根、腌制7,14,21,28d的发酵过程中分别检测到51,26,26,23,26种挥发性风味物质,共计92种化合物,其主要为酯类、烃类、醇类、醛类、酸类、腈类和其他类;5个阶段共有的挥发性风味物质有7种,分别为乙酸乙酯、3-丁烯基异硫氰酸酯、苯乙醇、α-松油醇、β-蒎烯、d-柠檬烯、苯丙腈;在芫根腌制至成熟过程中,酯类物质、醇类物质、腈类物质、酸类物质含量均有所增加,烃类物质、醛类物质、其他类物质含量则呈现下降趋势。  相似文献   

8.
本研究旨在分析腌制时间对大河乌猪干腌火腿风味品质的影响,揭示干腌火腿的特征风味物质。将172只大河乌猪鲜腿分为4个组,采用传统方法加工后,每组随机抽取4只火腿,采用固相微萃取-气相色谱-质谱(Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry,SPME-GC-MS)技术并结合相对气味活度值(Relative Odor Activity Value, ROAV)法和主成分分析(Principal Component Analysis,PCA)法对大河乌猪火腿挥发性风味物质进行分析。结果表明:腌制15、18、21、24 d的挥发性成分的种类分别为57、57、54、41种,共鉴定77种同类挥发性成分;聚类分析表明不同腌制时间的大河乌猪火腿挥发性物质的组成及相对含量存在较大的差异;ROAV分析表明醛类和醇类对风味贡献最大;PCA表明1-辛烯-3-醇、异戊醛、正辛醛、双戊烯是不同腌制期火腿中含量变化最明显的挥发性物质。腌制时间对大河乌猪干腌火腿风味品质有一定影响,研究可为火腿品质控制及风味改良提供理论依据。  相似文献   

9.
扒鸡加工过程中挥发性风味物质的变化规律   总被引:3,自引:0,他引:3  
为探究扒鸡加工过程中风味物质的变化规律,以德州扒鸡为研究对象,采用固相微萃取结合气相色谱-质谱联用(solid phase microextraction-gas chromatography-mass spectrometry,SPME-GC-MS)技术测定其加工过程中的风味物质,并通过气味活度值(odor activity value,OAV)分析它们的贡献。结果表明:从扒鸡加工过程的7 个采样点共检测到56 种风味物质,其中醛类7 种、醇类11 种、烃类27 种、酮类4 种、杂环化合物2种、醚类2种、酚类1种、酯类1种、含硫化合物1种;扒鸡的主要挥发性风味物质为醛类、醇类、烃类和酮类;加工过程中,各类风味物质含量总体上呈先增加后降低的趋势,卤制阶段挥发性风味物质的数量和含量显著增加(P<0.05),恒温卤煮后风味物质含量达到最大;二甲基二硫、己醛、壬醛、庚醛、1-辛烯-3-醇、2-戊基呋喃、D-柠檬烯、桉叶油醇和丁香酚的OAV>10,表明这些物质对扒鸡整体风味贡献较大,其主要来源于加工过程中不饱和脂肪酸的氧化及卤制时添加的香辛料。综上,卤制是扒鸡风味物质形成的关键加工阶段。  相似文献   

10.
本文研究咸鲅鱼加工过程中挥发性风味成分的变化情况。采用电子鼻与固相微萃取-气质联用法(SPME-GC-MS)分别检测鲜鱼、腌制、干制4、10、24、36、48 h 7个不同阶段的风味成分变化。结果表明,腌制和干燥阶段风味变化明显。7个阶段挥发性风味成分种类数分别为27、37、53、42、47、45种以及51种。其中,成品咸鱼中三甲胺、乙二醇单丁醚、己醛、1-戊烯-3-醇、壬醛、正辛醛、庚醛、异戊醛含量较高,相对含量分别为11.05%、7.21%、6.65%、6.35%、5.69%、4.56%、3.52%和3.37%。腌制和干燥是风味产生的主要加工阶段。醛类、醇类、酮类和烃类是主要的挥发性物质的种类,其中己醛、壬醛、正辛醛、庚醛、(Z)-4-庚烯醛、苯甲醛、1-戊烯-3-醇、1-辛烯-3-醇是咸鲅鱼风味的主要成分。因此可通过控制腌制和干燥条件改善咸鲅鱼风味。  相似文献   

11.
Since grapevine ( Vitis spp .) rootstock material is being traded increasingly as disbudded woody material a lack of distinctive morphological features on such material necessitates an alternative and reliable means of identification. Methods described here were developed for rapid and efficient extraction of DNA from woody samples rich in phenolic compounds and polysaccharides, and for subsequent identification of varieties by RAPD PCR. Using these methods, and with the application of only one selected RAPD primer, we were able to differentiate sixteen rootstock varieties, including the seven varieties most commonly used in Germany. Problems commonly encountered with reproducibility of RAPD patterns were avoided by choosing primers with a dinucleotide sequence and a high G/C content that allowed a rather high annealing temperature of 45°C. Methods described here should also be useful for other horticultural crops, especially those with woody tissues rich in phenolic compounds and polysaccharides.  相似文献   

12.
An internet website (http://cpf.jrc.it/smt/) has been produced as a means of dissemination of methods of analysis and supporting spectroscopic information on monomers and additives used for food contact materials (principally packaging). The site which is aimed primarily at assisting food control laboratories in the European Union contains analytical information on monomers, starting substances and additives used in the manufacture of plastics materials. A searchable index is provided giving PM and CAS numbers for each of 255 substances. For each substance a data sheet gives regulatory information, chemical structures, physico-chemical information and background information on the use of the substance in particular plastics, and the food packaging applications. For monomers and starting substances (155 compounds) the infra-red and mass spectra are provided, and for additives (100 compounds); additionally proton NMR are available for about 50% of the entries. Where analytical methods have been developed for determining these substances as residual amounts in plastics or as trace amounts in food simulants these methods are also on the website. All information is provided in portable document file (PDF) format which means that high quality copies can be readily printed, using freely available Adobe Acrobat Reader software. The website will in future be maintained and up-dated by the European Commission's Joint Research Centre (JRC) as new substances are authorized for use by the European Commission (DG-ENTR formerly DGIII). Where analytical laboratories (food control or other) require reference substances these can be obtained free-ofcharge from a reference collection housed at the JRC and maintained in conjunction with this website compendium.  相似文献   

13.
The characterization of the aromatic profile of several apricot cultivars with molecular tracers in order to obtain objective data concerning the aromatic quality of this fruit was undertaken using headspace–solid phase microextraction (HS–SPME). Six apricot cultivars were selected according to their organoleptic characteristics: Iranien, Orangered, Goldrich, Hargrand, Rouge du Roussillon and A4025. The aromatic intensity of these varieties measured by HS–SPME–Olfactometry were defined and classified according to the presence and the intensity of grassy, fruity and apricot like notes. In the six varieties, 23 common volatile compounds were identified by HS–SPME–GC–MS. Finally, 10 compounds, ethyl acetate, hexyl acetate, limonene, β-cyclocitral, γ-decalactone, 6-methyl-5-hepten-2-one, linalool, β-ionone, menthone and (E)-hexen-2-al were recognized by HS–SPME–GC–O as responsible of the aromatic notes involved in apricot aroma and considered as molecular tracers of apricot aromatic quality which could be utilized to discriminate apricot varieties.  相似文献   

14.
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 μm-thick oriented PP) into the food simulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.  相似文献   

15.
BADGE.2HCl and BFDGE.2HCl were determined in 28 samples of ready-to-drink canned coffee and 18 samples of canned vegetables (10 corn, 5 tomatoes and 3 others), all from the Japanese market. HPLC was used as the principal analytical method and GCMS for confirmation of relevant LC fractions. BADGE.2HCl was found to be present in one canned coffee and five samples of corn, BFDGE.2HCl in four samples of canned tomatoes and in one canned corn. No sample was found which exceeded the 1mg/kg limit of the EU for the BADGE chlorohydrins. However the highest concentration was found for the sum of BFDGE.2HCl and BFDGE.HCl.H2O at a level of 1.5mg/kg. A Beilstein test confirmed that all cans containing foods contaminated with BADGE.2HCl or BFDGE.2HCl had at lest one part coated with a PVC organosol.  相似文献   

16.
17.
A strong science base is required to underpin the planning and decision-making process involved in determining future European community legislation on materials and articles in contact with food. Significant progress has been made in the past 5 years in European funded work in this area, with many developments contributing to a much better understanding of the migration process, and better and simpler approaches to food control. In this paper this progress is reviewed against previously identified work-areas (identified in 1994) and conclusions are reached about future requirements for R&D to support legislation on food contact materials and articles over the next 5 or so years.  相似文献   

18.
19.
This paper describes the second part of a project undertaken to develop certified mussel reference materials for paralytic shellfish poisoning toxins. In the first part two interlaboratory studies were undertaken to investigate the performance of the analytical methodology for several PSP toxins, in particular saxitoxin and decarbamoyl-saxitoxin in lyophilized mussels, and to set criteria for the acceptance of results to be applied during the certification exercise. Fifteen laboratories participated in this certification study and were asked to measure saxitoxin and decarbamoyl-saxitoxin in rehydrated lyophilized mussel material and in a saxitoxin-enriched mussel material. The participants were allowed to use a method of their choice but with an extraction procedure to be strictly followed. The study included extra experiments to verify the detection limits for both saxitoxin and decarbamoyl-saxitoxin. Most participants (13 of 15) were able to meet all the criteria set for the certification study. Results for saxitoxin.2HCl yielded a certified mass fraction of <0.07 mg/kg in the rehydrated lyophilized mussels. Results obtained for decarbamoyl-saxitoxin.2HCl yielded a certified mass fraction of 1.59+/-0.20 mg/kg. The results for saxitoxin.2HCl in enriched blank mussel yielded a certified mass fraction of 0.48 +/- 0.06 mg/kg. These certified reference materials for paralytic shellfish poisoning toxins in lyophilized mussel material are the first available for laboratories to test their method for accuracy and performance.  相似文献   

20.
<正>We are pleased to announce the launch of a new international peer-reviewed journal-Food Science and Human Wellness,ISSN 2213-4530,which is an open access journal,produced and hosted by Elsevier B.V.on behalf of Beijing Academy of Food Sciences.Food Science and Human Wellness is an international peer-reviewed English journal that provides a forum for the dissemination of the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号