首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为实现大尺度产品部件吊装对接实时位姿安全监控,利用多传感器数据融合技术,组建了包括单目视觉系统、九轴MEMS以及激光测距传感器的多传感器联合测量系统-集成测量单元。针对组建的集成测量单元设计了多传感器联合测量系统联合标定的方法,该方法借助于工业机器人首先将单目视觉系统与九轴MEMS标定于集成测量单元坐标系,然后借助单目视觉系统和工业机器人将激光测距传感器的激光射线的空间直线方程标定于集成测量单元坐标系中,最终将单目视觉系统、九轴MEMS以及激光测距传感器联合标定于统一的集成测量单元坐标系下,完成联合标定。最后经过实际试验的数据分析以及误差验证,该方法完全满足吊装过程监测任务的精度与特性要求。  相似文献   

2.
针对装载机动臂孔组同轴度误差传统测量方法存在较大的人为误差且测量效率低等问题,设计基于机器视觉的同轴度误差在线检测系统。该系统使用Labview中的视觉模块设计系统检测界面并联合视觉算法库Halcon完成对同轴度误差的在线检测;采用全局固定阈值算法进行图像分割,基于形态学的Canny算子边缘检测方法对图像进行形态学处理获得其边缘区域;基于XLD形状选择的最小二乘算法对图像边缘进行拟合圆处理,获得圆搭外圆的边缘特征信息及圆心坐标,进而通过分析计算得到该组孔的同轴度误差。实验表明:该系统检测方案满足工业生产的精度要求,且检测效率优于传统测量方法,适合于大批量的非接触式测量。  相似文献   

3.
在圆度仪上测试轴套端面对轴套内孔轴线的垂直度,利用两上精密位移传感器测试安装在机座上两轴套端面的平行度,并计算两轴套内孔轴线的平行度,通过刮研基座上轴套的定位面,使内孔轴线平行度误差达到所需要求:调整下轴套的径向位移,使同轴度误差达到设计要求。通过对两轴套内孔轴线平行度和同轴度的精密测试和调整,实现了过定位轴承的精密装配。  相似文献   

4.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

5.
为了快速、准确地获得大尺寸工业产品或带有深槽孔工件的关键点三维坐标,本文基于工业近景摄影测量理论、立体视觉技术等,研究并实现了两种工业便携式、接触式光学探针测量系统。研究了测量系统涉及的探针设计、探针标定以及三维点解算等关键技术,设计了点阵式和手持相机式两种适用于不同工业场合的工业探针。针对点阵式探针的测量,提出了一种用于解算探针坐标系与世界坐标系相对关系的点云匹配方法。此外,采用拟合虚拟球的方法准确标定了两种探针的内部参数。最后,通过对比标准球与三坐标测量机的测量结果,得到系统的测量精度可达0.1 mm/m。该精度满足一般大、中型工件的三维点测量精度标准。  相似文献   

6.
为了实现微小磁性零件装配设备的精密装配任务,弥补加工误差和安装误差带来的系统精度损失,提出了一套自动标定及误差补偿方法。依照设备布置形式建立了不同模块的坐标系,提取影响装配精度的全部误差参数。根据导轨的位置关系建立了模块之间的运动转换模型,进而推导出基于装配任务的误差补偿模型。以设备中的机器视觉系统作为测量工具,同时设计专用标定板。通过观察各模块运动前后特征点的坐标变化对误差参数进行测量和辨识,并使用粒子群算法对参数进行了全局优化。基于开发的自动标定软件,在装配区域进行了标定和验证实验。实验结果表明,补偿后的系统开环控制精度在6μm以内,满足设备的装配精度需求。该方法为微小零件装配设备提供了自动化、高精度和高效率的标定方案。  相似文献   

7.
为实现大尺寸球形零件的三维形貌、球径和球度误差等参数的测量,设计了光笔式视觉测量系统,系统主要由高分辨率摄像机、光笔和配套的图像处理软件组成。首先介绍了系统的测量原理,然后依次研究了其中的关键技术:光笔的结构设计和基于近景摄影测量的光笔标定方法,利用单应性矩阵建立光笔坐标系和摄像机坐标系之间转换关系的方法。基于光栅尺的精度评价实验表明,在2 000 mm×1 500 mm视场范围内,相对测量精度优于0.05 mm/m。选取大尺寸金属球为实验对象,提取了球面若干点的三维坐标,生成拟合球并计算出球度误差为2.068 mm。  相似文献   

8.
由于机器人的基坐标系隐藏在底座内部,导致双机器人基坐标系间位姿关系的测量变得十分困难,而该关系作为机器人离线编程、协同控制的基石,对于多机器人系统的正常工作至关重要。为此提出了基于单目视觉的协同标定方法,利用单目视觉和棋盘格标定板求解双机器人基坐标系间位姿相对关系并使用激光跟踪仪标定法作为对照对双机器人基坐标系关系进行了标定,并通过双机器人位姿协同实验对标定的结果进行验证,最终得到基于单目视觉的协同标定方法所对应的双机器人位置协同误差最大值为1.278 mm,最小值为0.601 mm;姿态协同误差最大值则为0.481°。  相似文献   

9.
针对大飞机机身大部件的装配需求,设计了一套柔性好、效率高、自动化程度高的轻型自主移动制孔机器人,并根据制孔机器人自身的结构特点,提出一套机器人视觉检测系统的手眼标定方案。在此基础上,提出了基于基准孔建立局部坐标系和空间坐标系转换的基准检测算法。实验表明:该技术能够实现机器人高精度制孔的精确定位,满足大飞机机身制孔位置精度要求。  相似文献   

10.
为了提高立体视觉系统在大视场下的测量精度,基于误差溯源思想提出了一种构建虚拟立体靶标的大视场高精度视觉系统标定方法,克服了大尺寸高精度标定物难以制造等问题。对影响立体视觉系统测量精度的主要因素进行分析,列出视觉测量系统的误差溯源链,解析了大视场视觉系统精度瓶颈的原因。借助激光跟踪仪,运用非线性最小二乘单位四元数算法求解坐标系刚体变换,获取大范围高精度的空间点阵,构建虚拟靶标。在相机畸变模型中考虑了三阶径向畸变和二阶切向畸变参数,并使用Levenberg-Marquardt迭代算法进行标定参数求解,进一步提高系统精度。实验构建了一套测量空间约为4m×3m×2m的双目立体视觉系统,通过对某型号高精度直线导轨进行点距测量,在测量距离3m处,152组不同长度的横向距离测量的误差算术均值为-0.003mm,误差标准差为0.08mm。测量精度相较于传统的平面标定法有较大提升。  相似文献   

11.
针对牙颌等待测物非接触式光学三维测量,提出了一种融入标定功能的夹具设计方法,实现了测量过程中待测物与标定靶的空间一致性;定义了单目视觉测量过程涉及到的坐标系统;提出了一种基于坐标配准的点云拼合技术,简化了点云拼合流程,实现了点云拼合理论零误差;应用张正友标定方法对摄像机进行了标定;通过实验验证,得到了具有一定精度的牙颌三维模型点云拼合数据,实现了较快的测量速度,为提高牙颌测量系统的整体精度提供了有力支撑。  相似文献   

12.
基于球形目标的激光位移传感器光束方向标定   总被引:1,自引:0,他引:1  
搭建了非接触式的三坐标测量系统以便精密测量三维型面。将激光位移传感器通过具有两个回转轴的回转体安装在测量机的Z轴上,从而可根据待测表面的形状来调整传感器的方位。为了使传感器在各个方位上实现测量功能,提出了基于球形目标的光束方向标定方法,并详细阐述了其数学原理。标定时,驱动测量机使传感器分别沿测量机的X,Y和Z轴做等间距步进,根据步长和激光束长度的变化建立方程组求解出激光束所在直线的单位方向向量。最后,多次测量尺寸参数已知的六面体标准块规,检验了该测量系统的重复性。结果显示,该系统的测量不确定度为0.048mm;测量另一直径已知的被测球时,传感器在各个方位上的误差小于0.05mm,表明所提出的标定方法使测量系统达到了逆向工程的使用要求。得到的数据表明,本文所提出的方法有较高的标定精度和较好的重复性,为实现三维型面的快速扫描测量奠定了基础。  相似文献   

13.
彭巍  于兴芝  苏静 《装备制造技术》2007,(12):112-112,128
探讨了影响联轴器两轴同轴度的因素,论述了两轴同轴度的修正方法,提出了单表修正同轴度数据测量和调试时应注意的问题。  相似文献   

14.
随着海洋工程领域的不断发展,如何高精度地获取水下物体的三维点云具有重要学术和应用价值。由于光在不同介质中传播会引起光路的变化,导致水下线结构光视觉测量获得的点云受折射畸变影响,精度降低。针对上述问题,设计了一种基于线结构光的水下旋转扫描测量系统。提出了一种轴眼标定算法,能够将多视角水下点云配准到统一坐标系中。提出了一种引人折射补偿的水下相机成像模型,该模型可准确的描述激光在不同介质间传播过程中的光路,基于水下激光平面方程的约束,对水下点云进行折射校正,提高了水下点云的重建精度。水下测量实验结果表明,提出的高精度测量方法能够获得水下物体的三维点云信息,可测量水下目标的尺寸信息,距离目标30~80cm 时测量精度达到0.2mm,满足了水下目标三维高精度测量要求,  相似文献   

15.
点激光测头激光束方向标定   总被引:5,自引:0,他引:5  
为了使点激光测头能在任意方向上实现测量功能,提出一种逆向工程中标定激光束方向的方法,设计了一种标定面方向可调的标定块配合标定。标定过程中,让激光测头在标定面上分别沿X、Y、Z3个轴方向做等间距运动,根据进给步长与激光束长度变化量之间的关系确定激光束的方向。以三坐标测量机为平台,给出了以任意方向安置点激光测头时,测量值从传感器坐标系到基准坐标系的转换过程,并对标定算法及整个标定过程进行了详细描述。最后,通过与接触式测量进行对比实验,验证标定后点激光测头的测量效果。实验结果表明,用该方法标定的点激光测头在3σ范围内沿任意方向的测量误差为(0.0452±0.0168)mm,满足逆向工程的测量要求。  相似文献   

16.
用自准直仪测量孔的同轴度   总被引:1,自引:0,他引:1  
孟繁宏 《工具技术》2006,40(2):78-80
以V16柴油机机体主轴承孔同轴度的测量为例,介绍了用自准直仪测量同轴度的原理与方法。该方法可直接在生产现场对大孔径零件或大型零件的同轴度进行快速、准确地测量,且不受被测孔径表面质量的影响。  相似文献   

17.
箱体孔的同轴度、主轴前后支承轴颈的同轴度、轴承内外圈的径向跳动和端面跳动以及主轴轴肩跳动等元件误差,都会影响主轴组件的精度。采用误差定向装配法,则在同样的元件精度下能获得最高的主轴组件装配精度。  相似文献   

18.
介绍一种大型机械零部件孔用同轴度测量系统。系统采用单模光纤的尾纤半导体激光器作光源的激光准直系统 ,并为测量提供稳定的基准线。同轴度由多个截面的光斑中心坐标值和圆周采样数据按一定的方法计算。  相似文献   

19.
利用激光跟踪仪对机器人进行标定的方法   总被引:27,自引:3,他引:24  
提出一种简单的利用激光跟踪仪和线性方程最小二乘解对机器人进行标定的方法。通过将机器人运动学方程线性化,建立机器人末端凸缘盘位置误差与连杆D-H参数误差的关系方程。利用激光跟踪仪确定机器人的基坐标系,并通过圆周法求解每个关节电动机的直线方程,进而可以求得机器人的连杆扭角。通过激光跟踪仪测量机器人目标点的坐标值,并通过串口获得机器人6根轴的角度值建立标定方程。通过求解此方程,获得机器人的实际D-H参数,并将此参数应用于修正系统的运动学模型,能够提高机器人的绝对精度。最后对解算过程中的误差和原因进行说明,并对机器人的误差原因进行分析,指出标定过程中需要注意和改进的几个问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号