首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳纤维及石墨填充聚四氟乙烯复合材料的摩擦学性能研究   总被引:13,自引:0,他引:13  
利用M-200型环-块摩擦磨损试验机对石墨(Gr.)及碳纤维(CF)填充聚四氟乙烯(PTFE)复合材料的摩擦磨损性能进行了研究,探讨了石墨及碳纤维的协同润滑效应.认为碳纤维的加入大大提高了复合材料的承载能力,石墨的加入减小了碳纤维表面与对偶的摩擦系数,从而降低了碳纤维的脱落趋势,提高了复合材料的耐磨性.利用扫描电子显微镜(SEM)对PTFE复合材料的摩擦面及对偶转移膜进行了观察.结果表明,本实验中20%的石墨和10%碳纤维填充PTFE复合材料的摩擦磨损性能最好,且在高载荷下的摩擦磨损性能尤为突出,具有一定的应用价值.  相似文献   

2.
利用往复式摩擦磨损试验机,对聚四氟乙烯(PTFE)及石墨和MoS2填充的PTFE复合材料的摩擦磨损性能进行了测定,并利用光学显微镜对PTFE复合材料的摩擦磨损表面进行了观察。结果表明,一方面,石墨和MoS2起到了润滑作用,另一方面,石墨和MoS2阻止了PTFE带状大面积破坏,因而使得PTFE的摩擦系数降低,耐磨性提高。  相似文献   

3.
采用机械混匀、带温预压、烧结等工艺制备了莫来石填充的聚四氟乙烯(PTFE)复合材料,通过万能材料试验机、X射线衍射仪(XRD)、静态热机械分析仪(TMA)分别表征了复合材料的力学性能、物相和热学性质;研究使用MRH-3型高速环块磨损试验机来测试复合材料的耐摩擦磨损性能,借助场发射扫描电子显微镜研究了复合材料摩擦面形貌并分析摩擦磨损机理。结果表明:莫来石在PTFE体系中起填充增强作用,改性聚四氟乙烯复合材料的弹性模量显著增加;莫来石的填充提高了聚四氟乙烯的玻璃化转变温度,其平均线膨胀系数也呈下降趋势;当莫来石的质量分数由0增加至50%时,复合材料的摩擦系数呈先降低、后升高的趋势,复合材料的耐磨损性能显著改善;当莫来石的质量分数为40%时,其磨损率降低至纯聚四氟乙烯的1/530。  相似文献   

4.
利用MMU-10G端面高温摩擦磨损试验机,对聚酰亚胺(PI)和石墨共混改性聚四氟乙烯(PTFE)复合材料的摩擦学性能进行了测试,利用扫描电镜观察摩擦副表面的磨痕和复合材料的转移情况。同时研究最佳配比PTFE基复合材料在不同试验条件下的摩擦学性能,并测量了摩擦副表面的瞬时温度。结果表明,PI可以大幅度提高填充PTFE的耐磨性能,但PI含量增加不利于非金属转移膜的形成;当PI含量约为25%时,和石墨一起填充PTFE,复合材料的摩擦学性能最佳;当载荷大于300N和线速度大于4m/s时,摩擦表温度均高于125℃,复合材料进入高温摩擦阶段,摩擦表面发生蠕变,转移膜出现不同程度的破坏;PI填充PTFE复合材料摩擦性能在温度低于75℃时变化不明显。  相似文献   

5.
考察了不同含量聚苯酯对聚四氟乙烯复合材料力学性能和摩擦学性能的影响。结果发现,聚苯酯的加入降低了复合材料拉伸强度和弯曲强度,但提高了材料的硬度。同时,填料有效地改善了聚四氟乙烯复合材料的摩擦学性能,当聚苯酯含量(质量分数)为27%时,磨损体积仅为纯PTFE的1.5%。  相似文献   

6.
利用M-2000型试验机考察了一种以聚苯酯、聚酰亚胺填充聚四氟乙烯复合材料,发现此复合材料具有优良自润滑性能,PTFE、EKONOL、PI之比为50:30:20是本实验的最佳配比。运用扫描电子显微镜(SEM)对磨损表面进行观察和分析。研究结果表明,聚酰亚胺可以增加转移膜与对偶的结合强度,聚苯酯可以有效降低复合材料的摩擦系数。  相似文献   

7.
采用粉末冶金的方法制备了二硫化钼(MoS_2)、二硫化钨(WS_2)单独和复合填充改性聚四氟乙烯(PTFE)复合材料,对比分析了改性后复合材料的摩擦学性能;采用扫描电镜观察复合材料的磨损表面形貌,超景深显微镜观察对偶钢球上转移膜的表面形态,并分析了其磨损机理。结果表明,MoS_2和WS_2均能改善复合材料的摩擦稳定性和耐磨性,MoS_2和WS_2分别在质量分数10%、25%时改善效果达到最优,且低于20%时MoS_2改性效果优于WS_2,高于20%则相反;复合填充时耐磨性改善效果最优。添加不同种类的固体润滑剂,PTFE复合材料表现出不同的磨损表面形态,呈现不同的磨损机理。  相似文献   

8.
采用模压-烧结方法制备了纳米金刚石(ND)与聚醚醚酮(PEEK)填充改性的聚四氟乙烯(PTFE)复合材料,并研究了复合材料的摩擦磨损性能及其微观结构。结果表明,随着PEEK含量增加到20%(质量分数),复合材料的耐磨性显著提高;而较低填充量的ND可以在降低复合材料摩擦系数的情况下提高其耐磨性能。1.0%ND/20%(质量分数)PEEK/PTFE复合材料的减摩耐磨性能优良,与纯PTFE相比,该复合材料的摩擦系数下降约20%,耐磨性能提高120倍,原子力显微分析表明该复合材料中ND分布均匀。  相似文献   

9.
石国军  李翠  袁月 《复合材料学报》2016,33(9):1886-1898
为了提高聚四氟乙烯(PTFE)的摩擦学性能,采用机械混匀、带温预压及烧结等工艺制备了莫来石和碳纤维填充的PTFE基复合材料,并通过FTIR、XRD、万能材料试验机、洛氏硬度计、DSC及热机械分析分别表征了PTFE基复合材料的显微结构、力学性能和热学性能;然后,使用MRH-3 型高速环块磨损试验机测定了复合材料的摩擦系数和磨损率,通过自制的硅油砂浆磨损装置测定了复合材料在不同温度下的耐砂浆磨损性能;最后,借助3D测量激光显微镜研究了复合材料摩擦面形貌,并分析了摩擦磨损机制。结果表明:莫来石和碳纤维在PTFE体系中起到填充增强作用,20wt%莫来石-10wt%碳纤维/PTFE复合材料的弹性模量由364 MPa增加至874 MPa;20wt%莫来石-10wt%碳纤维/PTFE复合材料的干摩擦系数较大,但其磨损率与纯PTFE相比降低了3个数量级以上,且此复合材料在水摩擦条件下仍能保持较好的摩擦系数和磨损率,摩擦系数为0.157,磨损率为7.40×10-6 mm3·N-1·m-1;此外,20wt%莫来石-10wt%碳纤维/PTFE复合材料在较高温度下仍能表现出良好的耐砂浆磨损性能。所得结论表明改性得到的PTFE 基复合材料的摩擦学性能显著提高,复合材料可用于有杆抽油井防偏磨。   相似文献   

10.
利用MMU-10G端面高温摩擦磨损试验机,对聚酰亚胺(PI)和石墨共混改性聚四氟乙烯(PTFE)复合材料的摩擦学性能进行了测试,利用扫描电镜观察摩擦副表面的磨痕和复合材料的转移情况。同时研究最佳配比PTFE基复合材料在不同试验条件下的摩擦学性能,并测量了摩擦副表面的瞬时温度。结果表明,PI可以大幅度提高填充PTFE的耐磨性能,但PI含量增加不利于非金属转移膜的形成;当PI含量约为25%时,和石墨一起填充PTFE,复合材料的摩擦学性能最佳;当载荷大于300N和线速度大于4m/s时,摩擦表温度均高于125℃,复合材料进入高温摩擦阶段,摩擦表面发生蠕变,转移膜出现不同程度的破坏;PI填充PTFE复合材料摩擦性能在温度低于75℃时变化不明显。  相似文献   

11.
采用万能材料试验机和M-2000型摩擦磨损试验机考察了石墨填加量对矿物聚合物复合材料的机械性能和摩擦磨损性能的影响,利用XRD对材料的晶体结构进行了表征,利用SEM观察了材料的断面和磨损表面形貌并分析了其磨损机理.结果表明,填加石墨对矿物聚合物材料的机械性能会有一定程度的影响,但可以有效地改善矿物聚合物复合材料的摩擦磨损性能;随石墨填加量的增大,材料的摩擦系数和磨损率都有明显的降低,当石墨体积含量为25v%时,摩擦系数和磨损率均达到最低,分别为0.443和5.05×10-5mm3/N·m.研究发现,当石墨含量较低时,磨损机理主要是磨粒磨损,当石墨含量较高时,磨损机理除了磨粒磨损外还有粘着磨损.  相似文献   

12.
本文综述了聚四氟乙烯(PTFE)纳米复合材料在摩擦学领域的研究进展,指出纳米Al2O3最能显著增强PTFE耐磨损性能。纳米粒子增强PTFE耐磨损性能的机理还在探索中,但可能与裂纹捕获、填料富集、转移膜形成、磨屑尺寸减小、填料/基底界面作用、摩擦化学反应等因素有关。纳米材料易团聚及无机-有机物相容性差仍是PTFE纳米复合材料发展过程中亟待解决的问题。  相似文献   

13.
14.
本文探讨了淬火对填充聚四氟乙烯综合性能的影响,指出淬火是取得填充聚四氟乙烯优良综合性能的重要手段。还探讨了淬火时制件的应力开裂与制件截面几何形状及冷压工艺的关系和对策。  相似文献   

15.
一、前言机械工业是聚四氟乙烯(以下简称PTFE)的重要应用领域,约占PTFE总消耗额的30%。在该领域中,大多需要采用填充PTFE,以改善PTFE的耐磨性、耐压性和冷流性能。因此,填充PTFE对PTFE工业的发展具有重要意义。在国外,填充PTFE一般由PTFE树脂生产厂家生产。通过在PTFE树脂中添加无机类、金属类及高聚物类等不同填料,来生产不同系列与众多品级的填充PTFE。其制品性能与纯PTFE相比,耐压性提高5~10倍,耐磨性提高1000倍,线膨胀系数降低80%,导热性提高5倍,并且降低了体积电阻与表面电阻。  相似文献   

16.
硅线石填充双马来酰亚胺摩擦学性能的研究   总被引:1,自引:1,他引:0  
用M-200型试验机在干摩擦条件下考察了硅线石单独填充双马来酰亚胺(BMI)和硅线石与聚四氟乙烯(PTFE)共同填充BMI两类复合材料的摩擦学特性。结果表明,适量的Sa能降低BMI的摩擦系数和磨损量,但会在对偶件上造成划伤,PTFE与Sa共同填充BMI,不仅能进一步降低复合材料的μ和磨损量,而且能有效地抑制对偶件上的划伤,经过分析,Sa填充BMI的复合材料,对磨时其表面较高的粗糙度和Sa硬粒子友承  相似文献   

17.
利用MM-200型摩擦磨损试验机,对不同体积含量MoS2填充聚酰亚胺(PI)复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了研究,并利用扫描电子显微镜对PI复合材料及其偶件的磨损表面进行了分析。研究发现,添加MoS2可有效降低PI复合材料的摩擦系数,且PI复合材料的摩擦系数随MoS2含量的增大而减小。除PI+10%MoS2外,其它含量MoS2填充PI复合材料的耐磨性能均明显优于纯PI材料,但当MoS2的含量超过30%后,PI复合材料的磨损率基本不随MoS2含量变化。在较高的载荷条件下,MoS2填充PI复合材料均呈现出良好的减摩耐磨性能。  相似文献   

18.
用不同体积分数的纳米ZrO_2和聚醚醚酮(PEEK)颗粒填充改性聚四氟乙烯(PTFE)复合材料。使用环-块摩擦磨损试验机测试PTFE复合材料在滑动速度为2 m/s、载荷为200 N的试验条件下的摩擦学性能。获取不同阶段摩擦学性能的数据,计算出在整个试验过程中样品的瞬时磨损率。利用扫描电镜观察不同试验阶段对偶钢环表面形貌的变化图像并进行分析。利用仿真模拟软件(ABAQUS)对摩擦过程中PTFE复合材料的接触应力变化进行分析。结果表明,纳米ZrO_2和PEEK颗粒可以协同改善PTFE复合材料的摩擦学性能。特别是添加8%的纳米ZrO_2和20%的PEEK能使PTFE复合材料同时获得最佳的耐磨性(1.29×10~(-6) mm~3/Nm)和较低的摩擦系数。在摩擦试验的后期PTFE复合材料的瞬时磨损率突然急剧上升。根据瞬时磨损率、磨损表面、转移膜形貌和磨屑形态特征的变化规律,将整个磨损过程分为3个阶段(低磨损阶段、过渡磨损阶段和严重磨损阶段)。  相似文献   

19.
付传起  王宙 《材料保护》2011,44(10):32-34,7
为了进一步提高材料的力学性能和摩擦学性能,以感应加热烧结的方法,制备了Fe-Cu-Al-石墨复合材料。利用XRD,EDS,SEM等分析了复合材料的组成、结构、表面形貌;研究了其力学性能、摩擦学性能及磨损机理。结果表明:Fe-Cu-A1-石墨复合材料具有多孔结构;随着石墨含量的增加,复合材料的力学性能降低,摩擦学性能提高...  相似文献   

20.
聚甲醛/聚四氟乙烯共混物的摩擦学性能研究   总被引:5,自引:0,他引:5  
采用冷压-热烧结工艺研制了一系列不同含量PTFE的POM/PTFE共混物,在往复摩擦磨损试验机上评价了共混物的摩擦磨损性能,并利用SEM、XPS和AES对其磨损机理进行了研究。结果表明,在共混物中PTFE的成分增加,不仅可以降低POM/PTFE共混物的摩擦系数,还可以增强POM的耐磨性,主要原因是共混物中POM和PTFE皆向对偶转移,形成了富集PTFE的转移膜。同时发现填加10%~20%PTTE的共混物具有较好的摩擦磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号