首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Iridium(III) complexes of the type [Ir(η5‐C5Me5)Cl2{Ph2PCH2CH2CH2S(O)xPh‐κP}] (x=0–2; 1 – 3 ) and [Ir(η5‐C5Me5)Cl{Ph2PCH2CH2CH2S(O)xPh‐κPS}][PF6] (x=0–1; 4 and 5 ) with 3‐(diphenylphosphino)propyl phenyl sulfide, sulfoxide, and sulfone ligands Ph2PCH2CH2CH2S(O)xPh were designed, synthesized, and characterized fully, including X‐ray diffraction analyses for complexes 3 and 4 . In vitro studies against human thyroid carcinoma (8505C), submandibular carcinoma (A253), breast adenocarcinoma (MCF‐7), colon adenocarcinoma (SW480), and melanoma (518A2) cell lines provided evidence for the high biological potential of the neutral and cationic iridium(III) complexes. Neutral iridium(III) complex 5 proved to be the most active, with IC50 values up to about 0.1 μM , representing activities of up to one order of magnitude higher than cisplatin. Using 8505C cells, apoptosis was shown to be the main mechanism through which complex 5 exerts its tumoricidal action. The described iridium(III) complexes represent potential leads in the search for novel metal‐based anticancer agents.  相似文献   

2.
Efficient cross-coupling and carbonylative coupling of terminal alkynes with aryl iodides catalyzed by PdCl2(P(OPh)3)2 in the presence of NEt3 in toluene and in ionic liquids is described. In imidazolium ionic liquids, [bmim]PF6 or [mokt]PF6 (bmim = 1-butyl-3-methyl imidazolium cation, mokt = 1-methyl-3-octyl imidazolium cation) catalyst was recycled and used in four concecutive catalytic cycles with high activity. In the absence of aryl iodide the same catalytic system catalyzed head-to-tail dimerization of phenylacetylene to the 1,3-diphenyl enyne, trans-PhC ≡ C–C(Ph)=CH2, with a yield of 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号