首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 23 full factorial design. In vitro studies, the 23 full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n = 0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25°C/60% RH, 30°C/65% RH, and 40°C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65 ± 0.082 hr-4.82 ± 2.12 hr) and AUC0-30 hr (from 734.88 ± 230.68 ng/mL.hr-1454.86 ± 319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87 ± 27.51 ng/mL-115.08 ± 14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r = 0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.  相似文献   

2.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0-t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

3.
A transdermal delivery system containing the anti-inflammatory analgesic diclofenac diethyl ammonium in an ethyl hexyl acrylate and vinyl acetate pressure-sensitive adhesive system was developed for percutaneous absorption. These patches were subjected to in vitro permeation and permeation enhancement studies through rat skin using a specially designed diffusion cell. Further, the work deals with percutaneous absorption studies carried out on both animals and human volunteers. The pharmacokinetic parameters calculated from the blood levels of the drug reveal a profile typical of a sustained-release formulation, with the ability to maintain adequate plasma levels for 24 hr (i.e., up to the next application). (Area under the curve [AUC]: 4.356 ± 1.3 mcg/ml.hr in animals and 0.442 ± 0.053 mcg/ml.hr in humans; Tmax was 8 hr in both the cases, whereas Cmax was 0.288 ± 0.088 mcg/ml in animals and 0.034 ± .008 mcg/ml in human volunteers.) The amount of the drug bioavailable for targeting the sites of action is lower than via the oral route, but the absorbed dose appears to be adequate for therapeutic use, particularly because of the absence of side effects.  相似文献   

4.
The objective of this study was to assess average bioequivalence of two immediate released tablet formulations of 500-mg clarithromycin tablets in 24 healthy Thai male volunteers. In a randomized, single dose, fasting state, two-period, crossover study design with a 1-week washout period, each subject received a 500-mg clarithromycin tablet. Plasma samples were collected over a 24-hour period after oral administration and were analyzed by using a validated method using high performance liquid chromatography with electrochemical detection. Pharmacokinetic parameters were determined by using noncompartmental analysis. The time to reach the maximal concentration (tmax, h), the peak concentration (Cmax, ng/mL), and the area under the curve (AUC0 - ∞, ng.h/mL) of the Reference and Test formulations were 2.0 ± 0.8 vs. 2.2 ± 0.9, 2793 ± 1338 vs. 2642 ± 1344, and 17912 ± 7360 vs. 17660 ± 7992, respectively. Relative bioavailability was 0.99. The 90% confidence interval of Cmax and AUC0 - ∞ were 82.6-112.1% and 84.7-112.0%. Bioequivalence between the Test and Reference formulation can be concluded.  相似文献   

5.
The bioequivalence study of two 30 mg pioglitazone formulations was determined in healthy Thai male volunteers after a single dose administration in a randomized cross-over study with a 1-week washout period. Due to the high variability of the rate and extent of absorption of pioglitazone, an add-on subject study was required to assess bioequivalence. Reference product (Actos®, Takeda Chemical Industries, Ltd., Osaka, Japan) and test product (Glubosil®, Silom Medical Co. Ltd., Bangkok, Thailand) were given to 35 volunteers after overnight fasting. Blood samples were collected at specified time intervals. Plasma was analyzed for pioglitazone concentration using a validated HPLC method. Pharmacokinetic parameters were compared between test and reference products from plasma concentration-time profile by using non-compartment analysis. The statistical comparison of Cmax and AUC0-t, AUCt-∞ clearly indicated that no significant difference in two products of pioglitazone tablets in add-on subject study. The 90% confidence intervals for the mean ratio (test/reference) of Cmax and AUC0-t, AUCt-∞ were within the Thailand Food and Drug Administration acceptance range. Based on the pharmacokinetic and statistical results of this study, we can conclude that Glubosil® is bioequivalent to Actos®, and that two products can be considered interchangeable in medical practice.  相似文献   

6.
The bioavailability ot Chloroquine phosphate (150 mg base) film coated tablet (manufactured by Pars - Darou Co. Iran) was compared with that ot the Resochin tablet (Bayer, Germany) in seven healthy male and female volunteers. Blood samples were collected up to 14 days utter oral dosing of 300 nig and chloroquine serum concentrations were determined by means ot High Performance Liquid Chromatography (HPLC). From the analysis ot serum samples the following pharmacokinetic parameters were obtained: the absorption rate of test tablet and that of reference were 0.25 h-1 and 0.34 h-1 respectively; maximum serum concentration of both tablets was nearly equal, 81.6±25 and 83.4±27 ng/ml (for test and reference tablets respectively); time to reaching Cmax (tmax) was also very similar, 4±1.6 for test and 4±1.0 h for reference; the area under the serum concentration-time curve [AUC(O -)] of 6976 ng.ml-1.h±1967 for test and 6446 ng.ml-1.h ± 2460 for reference tablets were found using trapezoidal rule. By evaluating of the r=(T/R)×100 for each parameters, the test tablet was found to be bioequivalent to Resochin at p = 0.05.  相似文献   

7.
The bioequivalence of two oral formulations containing aceclofenac 100 mg was determined in 24 healthy Indian male volunteers. The study was designed as a single dose, fasting, two-period two-sequence crossover study with a washout period of 1 week. The content of aceclofenac in plasma was determined by a validated HPLC method with UV detection. The preparations were compared using the parameters area under the plasma concentration-time curve (AUC0-t), area under the plasma concentration-time curve from zero to infinity (AUC0-∞), peak plasma concentration (Cmax), and time to reach peak plasma concentration (tmax). No statistically significant difference was observed between the logarithmic transformed AUC0-∞ and Cmax values of the two preparations. The 90% confidence interval for the ratio of the logarithmic transformed AUC0-t, AUC0-∞, and Cmax were within the bioequivalence limit of 0.80-1.25.  相似文献   

8.
Insulin suppositories were formulated using Witepsol W35 as a base to investigate the effect of various bile salts/acids on the plasma glucose concentration of diabetic beagle dogs. Comparison of the effect of these formulations was made with that produced by insulin subcutaneous injections. Of the bile salts/acids studied, incorporation of 100 mg of deoxycholic acid (DCA), sodium cholate (NaC), or sodium deoxycholate (NaDC) with insulin (10 U/Kg) showed that suppositories containing NaDC produced the highest area under the curve (AUC) and relative hypoglycemia (RH) of 290 ± 83 mg%h and 28% ± 8.1%, respectively. To study the optimum amount of NaDC in insulin suppositories to produce the highest RH, 50-200 mg/suppository were used, and we found that 150 mg NaDC produced 35% ± 13% RH. We also studied the influence of different doses of insulin (5-20 U/kg) in the presence of NaDC (100 mg). It was found that increase of the insulin dose was accompanied by an increase in AUC and maximum reduction in plasma glucose level Cmax. A combination of NaDC (100 mg) and NaC (50 mg) produced an AUC of 252 ± 13 mg% h and an RH of 49% ± 2.6%, which were higher than produced by either of its individual components (NaC 50 mg or NaDC 100 mg) when used alone or when compared with an equivalent amount of NaDC (150 mg). When the effect of sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) was studied, it was found that an insulin suppository containing 100 mg of either NaTC or NaTDC produced an RH equivalent to that produced previously with a mixture of NaDC (100 mg) and NaC (50 mg). On the other hand, NaC (50 mg) did not improve the hypoglycemic effect of NaTC any further. In conclusion, a relative hypoglycemia of about 50% can be reached using insulin suppositories containing Witepsol W35 as a base and NaDC plus NaC (100 mg plus 50 mg, respectively), NaTDC (100 mg), or NaTC (100 mg) as rectal absorption enhancers of insulin. A desirable hypoglycemia, expressed as Cmax, and/or AUC can be reached by adjusting the insulin dose in the formulation according to the degree of hyperglycemia.  相似文献   

9.
The hypoglycemic effect of oral insulin capsules coated with pH-dependent Eudragit® S100 and containing various absorption promoters was studied in hyperglycemic beagle dogs. The absorption enhancers used were bioadhesive polymers, sodium salicylate, and non-ionic surfactants. A comparative study of the bioadhesive polymers, polycarbophil (PC), hydroxypropyl methylcellulose (HPMC), and carbopol 934 in insulin-coated capsules revealed no significant difference between the insulin capsules containing these polymers, giving relative hypoglycemia (RH) values ranging from 4.3±2.3% to 6.5±5.1%. It was also found that the method of preparation of the mixture of the bioadhesive polymer with insulin either by physical mixing or freeze-drying did not affect the RH values obtained. Sodium salicylate, when used in insulin enteric-coated capsules (50 mg) mixed with insulin as a physical mixture, or prepared by wet granulation using 10% polyvinyl pyrollidone (PVP), or by freeze-drying, produced RH values ranging from 7.3±2.9% to 9.4±3.7%. When sodium salicylate (100 mg) was used with insulin in freeze-dried granules an RH value of 10±2.6% was produced. As the dose of insulin increased from 6 to 9 U/kg, the area under curve (AUC) of the enteric-coated capsules containing 50 mg sodium salicylate increased from 73.2±27.8% to 121.4±102.7% reduction, but the RH did not change significantly. Insulin capsules containing polyoxyethylene-9-lauryl ether (POELE) used in its optimum concentration (2%), found in these experiments, produced RH of 9.5±6.8% when prepared as granules by wetting with a few drops of absolute alcohol in the presence of PC (50 mg). Insulin capsules containing lower (1%) or higher (3%) concentrations of POELE and prepared with PC, 50 mg by wet granulation produced lower RH of about 6%. The enteric-coated oral insulin capsules containing insulin (6 or 9 U/kg) and sodium salicylate (50 mg) as an absorption promoter, together with the bioadhesive polymer polycarbophil (50 mg), and prepared either by wet granulation using ethanol or by freeze-drying, are the best formulations to be used. They achieved a reduction in plasma glucose levels of about 25-30% and RH of about 10%. Also insulin (9 U/kg) capsules containing 2% POELE produced a 28% reduction in plasma glucose levels and RH of 9.6±6.8%.  相似文献   

10.
The objectives of the present study were: (1) to investigate the possibility of using a Carbopol polymeric solution as granulating agent by the fluid bed granulating process; (2) to select a suitable method of tabletting for sustaining the release of ketoprofen for 12 hr; (3) to perform stability studies according to International Committee on Harmonization (ICH) guidelines and photostability on ketoprofen SR tablets; (4) to study the influence of the storage conditions on release kinetics and melting endotherm of ketoprofen; and (5) to predict the shelf-life of the ketoprofen SR tablets. Tabletting ingredients were ketoprofen, anhydrous dicalcium phosphate, Carbopol® 971P, talc, and magnesium stearate. Carbopol® 971P solution (0.8% w/v) was used as a granulating solution in the fluid bed granulator. For comparative evaluation, tablets were also prepared by direct compression and wet granulation, and subjected to dissolution. Tablets prepared by fluid bed granulation technique were stored in incubators maintained at 37, 40, 50, and 60°C, 40°C/75% RH, 30°C/60% RH, and 25°C/60% RH, and in a light chamber with light intensity of 600 ft candle at 25°C. Melting endotherms were obtained for the drug as well as the tablets during stability studies by differential scanning calorimetry. Tablets prepared by fluid bed granulation technique prolonged the release of ketoprofen better than tablets obtained by direct compression and wet granulation. Further, it complied with the requirements of ICH guidelines for stability testing. Higher temperature and humidity (40 ± 2°C/75% RH, 40°C, 50°C, and 60°C) adversely affected the rate and extent of the dissolution. Ketoprofen SR tablets stored in amber-colored bottles demonstrated a good photostability for 6 months at 600 ft candle. The shelf-life of the formulation was predicted as 32 months.  相似文献   

11.
Rebamipide is an anti-ulcer agent exhibiting a low aqueous solubility and a poor oral bioavailability. This study was conducted to examine if the rebamipide lysinate salt form would exhibit improved solubility profiles and higher oral bioavailability compared with rebamipide free acid. Both compounds showed pH-dependent solubility profiles, with the solubility of rebamipide lysinate dramatically improved at a median pH of 5.1 (17-fold increases) over free acid, but the improvement in the solubility was not as pronounced in artificial gastric and intestinal fluids (1.4- and 1.9-fold increases, respectively). The Cl, Vss and t1/2 in rats after i.v. injection of rebamipide (0.5 mg/kg) averaged 21.0 ± 3.2 ml/min/kg, 0.3 ± 0.0 L/kg, and 0.4 ± 0.1 hr, respectively. No significant difference was observed in these parameters between rebamipide and rebamipide lysinate. Despite improved solubility profiles, the absolute oral bioavailability of rebamipide lysinate was not increased (5.1 vs. 4.8%) nor did AUC (407.8 vs. 383.6 ng.hr/ml) and Cmax (87.4 vs.77.0 ng/ml) compared with rebamipide free acid. Rebamipide lysinate, however, showed a more rapid absorption, and initial serum drug concentrations were higher than those found for rebamipide free acid.  相似文献   

12.
Transdermal patches of verapamil hydrochloride were prepared using four different polymers (individual and combination): Eudragit RL100 (ERL100), Eudragit RS100 (ERS100), hydroxypropyl methylcellulose 15 cps (HPMC), and ethyl cellulose (EC), of varying degrees of hydrophilicity and hydrophobicity. The effect of the polymers on the technological properties, i.e., drug release, water vapor transmission rate (WVTR), and percentage moisture loss (ML), percentage moisture absorption (MA), folding endurance, and thickness, was investigated. Different formulations were prepared in accordance with the 23 factorial design, with ERL100 being the parent polymer. The patch containing ERL100 alone showed maximum WVTR, % MA, and % ML, which could be attributed to its hydrophilic nature. As expected, substitution with ERS100, HPMC, and EC decreased all the above values in accordance with their decreasing degree of hydrophilicity. In vitro release studies showed zero-order release of the drug from all the patches, and the mechanism of release was diffusion mediated. Moreover, the release of the drug was sustained and it extended over a period of 24 hr in all formulations. A12 emerged as the most satisfactory formulation insofar as its technological properties were concerned. Further, release and permeation of the drug from the most satisfactory formulation (A12) was evaluated through different biological barriers (shed snake skin, rabbit skin, and rat skin) to get an idea of the drug permeation through human skin. Shed snake's skin was found to be most permeable (82.56% drug release at 24 hr) and rat skin was least permeable (52.38%). Percutaneous absorption studies were carried out in rabbits. The pharmacokinetic parameters calculated from blood levels of the drug revealed a profile typical of a sustained release formulation, with the ability to maintain adequate plasma levels for 24 hr. [AUC: 3.09 mg/mL hr, Cmax: 203.95 µg/mL, Tmax: 8 hr]. It can therefore be concluded that the patch containing ERL100 and HPMC in the ratio 8:2 has achieved the objectives of transdermal drug delivery system, such as avoidance of first pass effect, extended release, and reduced frequency of administration.  相似文献   

13.
A significant increase in solubility and dissolution rate of nitrendipine, a slightly soluble calcium channel blocker, was achieved by inclusion complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complex was prepared by solvent evaporation method and characterized by phase solubility method, x-ray diffractometry, infrared spectroscopy, and differential scanning calorimetry. The solubility of nitrendipine increased linearly as a function of HP-β-CD concentration, resulting in AL-type phase solubility diagram which revealed a formation of inclusion complex in a molar ratio of 1:1, with the apparent association constant of 108.3 M-1. The in vitro dissolution rate of nitrendipine in pH 7.4 phosphate buffer was in the order of inclusion complex, physical mixture, and nitrendipine powder. These three different forms of nitrendipine were administered orally to rats with a dose of 10 mg/kg equivalent to nitrendipine. The AUC of inclusion complex was significantly larger than that of nitrendipine powder. Tmax of inclusion complex was significantly shorter and Cmax was significantly higher than those of nitrendipine powder. Cmax of physical mixture was higher than that of nitrendipine powder. Tmax of physical mixture, however, remained the same. The results indicated that the bioavailability of nitrendipine could be improved markedly by inclusion complexation, possibly due to an increased dissolution rate.  相似文献   

14.
The relative bioavailability of a bioadhesive containing, directly compressed, tablet formulation against the commercial indomethacin capsules “Indocid, MSD” has been investigated in dogs. The tablets showed a prolongation of the time to reach maximum concentration to 3 hours compared to 2 hours in capsules. They also showed 39% and 184% increase in maximum and minimum plasma concentration, respectively. The relative bioavailability of the tablets is 152% compared to capsules where the tablets showed a mean area under the plasma concentration-time curve of 26 ug.hr/ml compared to 17 ug.hr/ml for capsules.  相似文献   

15.
Abstract

Diclofenac sodium enteric-coated beads were prepared using the conventional pan coating technique. Eudragit L100 was used as a pH-dependent release-controlling polymer. The beads were evaluated for their particle size distribution, drug loading efficiency, flowability, in vitro release in 0.1 N HCI (pH 1.2) and phosphate buffer (pH 6.8), and bioavailability in beagle dogs relative to the commercial enteric-coated tablets Voltaren®. The beads showed a narrow particle size distribution in which 83% of the beads were in the range of 1-2 mm. The actual yield of the beads was 90.5% and their drug loading was 92%. The beads released about 8% of the drug during 2 hr of dissolution in 0.1 N HCI, and the commercial tablets released no drug. In phosphate buffer (pH 6.8) both formulations released their drug content in 1 hr. Both formulations are, therefore, in compliance with the USP requirements for release from enteric-coated dosage forms.

The in vivo availability study in six beagle dogs revealed that the formulated enteric-coated beads filled in hard gelatin capsules had a 197.54% bioavailability relative to that of the commercial Voltaren tablets. The tablets showed a significantly lower (p < 0.05) area under curve for 0—8 hr (AUC0-8 hr) of 13.44 ± 15.02 μg hr/ml compared to 26.55 ± 5.19 μg hr/ml for the capsules. The capsules showed a nonsignificantly (p > 0.05) higher peak plasma concentration (Cmax) of 6.77 ± 0.67 μg/ml compared to 5.88 ± 7.38 μg/ml for the tablets. The time to reach peak (Tmax) values were 2 ± 1.48 and 2.25 ± 1.08 hr for the capsules and tablets, respectively. The capsules showed less interdog variability with respect to Cmax (CV% 34.6) and AUC (CV% 19.55) compared to CV% 79.9 and 111.76, respectively, for the commercial tablets  相似文献   

16.
The pharmacokinetic and mean time tissue distribution parameters, after a single 50-mg/kg dose of quercetin administered as intravenous bolus, oral solution, and oral suspension, were determined using rat as an animal model. Following intravenous administration, the elimination rate constant and the elimination half-life were found to be 0.0062 min-1 and 111 min, respectively. Examining the mean time tissue distribution parameters reflected a strong binding affinity of the drug molecules to both plasma and tissue proteins. In addition, the low permeability rate of drug molecules in the peripheral system was demonstrated. Following the oral administration of the drug, the extent of absorption was greater from solution than from suspension. Moreover, the solution showed a shorter Tmax and a higher Cmax than suspension. The absolute bioavailability for the solution was 0.275 and that for suspension was 0.162. The mean residence time (MRT) and the mean absorption time (MAT) were higher for suspension, reflecting the need for dissolving the drug in order to be absorbed. The mean (in-vivo) dissolution time (MDTin-vivo) was 34.5 min. Thus, an oral quercetin formulation that can readily form a drug solution in the gastrointestinal tract may enhance the absorption of the drug.  相似文献   

17.
The relative bioavailability of a bioadhesive containing, directly compressed, tablet formulation against the commercial indomethacin capsules “Indocid, MSD” has been investigated in dogs. The tablets showed a prolongation of the time to reach maximum concentration to 3 hours compared to 2 hours in capsules. They also showed 39% and 184% increase in maximum and minimum plasma concentration, respectively. The relative bioavailability of the tablets is 152% compared to capsules where the tablets showed a mean area under the plasma concentration-time curve of 26 ug.hr/ml compared to 17 ug.hr/ml for capsules.  相似文献   

18.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0–t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

19.
In recent years, there has been much debate concerning the relative pros and cons of purchasing medications from foreign markets such as Mexico and Canada. The following study compares the content uniformity and weight variation for three medicinal products, acquired from pharmacies in both Mexico and the United States: amoxicillin capsules (500 mg), amoxicillin/clavulanic acid suspension (400 mg and 57 mg/5 mL, respectively), and furosemide tablets (40 mg). Twenty capsules/tablets were individually weighed and a designated aliquot was taken. Following dissolution in an appropriate solvent and sonication, a sample was taken and analyzed via high performance liquid chromatography (HPLC). The suspensions were prepared according to directions on the label. Five samples of the suspensions were then taken and analyzed via an appropriate HPLC method. The content uniformity for the amoxicillin capsules was found to be 15.4 ± 2.4% and 99.4 ± 9.3%, for Mexican and U.S. capsules, respectively. The percent relative standard deviation (% RSD) for weight variation was found to be 8.7% and 1.5% for capsules obtained from Mexico and the United States, respectively. Content uniformity analysis for the Mexican suspension product resulted in an average of 85.5 ± 1.2% for amoxicillin and 98.6 ± 1.9% for the clavulanic acid content, while the results for the U.S. suspension product were 104.4 ± 3.1% and 117.8 ± 3.6% for amoxicillin and clavulanic acid, respectively. Content uniformity for the furosemide tablets was found to be 90.3 ± 4.8% and 95.6 ± 2.1% for Mexican and U.S. tablets, respectively. The % RSD of weight variation for the Mexican tablets was 2.1%, while the % RSD for the U.S. tablets was found to be 1.0%. From the three products tested, content analysis revealed that the amount of active ingredients for two of the products acquired in Mexico were appreciably less than the concentrations for their U.S. counterparts.  相似文献   

20.
High quality epitaxial GaAs films of 1.8 and 6.3 μm thickness on silicon substrates were examined for lattice distortion, misalignment and curvature by X-ray diffraction (Bond method) at 20–400 °C. These films were deposited by the metal-organic chemical vapour deposition method on the (001) plane of silicon using a buffer layer produced at Tb = 370 or 460 °C. A top layer was then grown at Tt = 560 or 650 °C. The GaAs films contract more strongly on cooling than the substrate, which causes a curvature and a tetragonal distortion below a critical temperature Tc. This temperature varies on thermal treatment at 200–400 °C and approaches Tb, the growth temperature of the buffer layer. The tetragonal distortion can be stabilized, so that Tc approximates Tb, if the GaAs films are annealed for several days at 400 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号