首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Ba1?xLaxFe12O19 (x = 0.0, 0.2, 0.4, 0.6) hollow ceramic microspheres (HCMs) have been prepared by combining self-reactive quenching method with heat treatment. Their material parameters, magnetic and microwave absorbing properties were investigated. It was observed that after doping of lanthanum, the material parameters showed a little change except hexagonal crystal disappearing. And the magnetic properties of HCMs were decided by lanthanum content and material parameters. With the lathanum increases from 0.0 to 0.6, the saturation magnetization (Ms) values initially increased, and then decreased sharply to a minimum value, and increased again, moreover, the coercive force (Hc) values were reduced first, and then increased, and decrease to a minimum value. Absorbing properties tests indicate that after La3+-doped, at 2 mm thickness, the effective absorbing band (<?10 dB) was reduced to 4.7, 5 and 4.4 GHz, respectively, the minimum reflectance would decrease in low substituted level (x ≤ 0.4) and increase in high level (x = 0.6), and the frequency shifts to low frequency with the increasing of doping content. In 1.5–3 mm range, with the increasing of thickness, the absorption peak of Ba1?xLaxFe12O19 (x = 0.2, 0.4, 0.6) HCMs shifts to low frequency and the absorption intensity increases, the effective absorbing band can up to 10, 8.1 and 8 GHz, respectively.  相似文献   

2.
Gadolinium substituted yttrium iron garnet (Gd: YIG: Y3?xGdxFe5O12 where x?=?0, 0.25, 0.5, 0.75, 1, 1.25, 1.5) nanopowders were synthesized by microwave hydrothermal method. Phase structure of synthesized powders was examined using fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) which revealed a cubic garnet structure. Spherical-like morphology of synthesized powders was confirmed by field emission scanning electron microscopy (FESEM) studies. The synthesized powders were sintered at 1100?°C for 60 min using microwave furnace and characterized by using XRD and FESEM. Magnetic properties such as saturation magnetization and Curie temperature were measured using vibration sample magnetometer (VSM) and differential scanning calorimetry (DSC) studies respectively. Temperature stability of magnetization was measured using pulse magnetometer and complex permeability was measured over a frequency range of 100 kHz–1.8 GHz. The obtained results showed that the saturation magnetization as well as permeability decrease while curie temperature and temperature stability increase with Gd concentration. It is concluded that substitution of Gd makes the YIG better microwave magnetic material, which may be used in high power non-reciprocal microwave devices in the microwave region.  相似文献   

3.
A systematic investigation of structure, electrical and magnetic properties of polycrystalline ceramics La0.67Ca0.33?x K x MnO3 (x?=?0.05, 0.10, 0.15, 0.20, 0.25) samples, prepared by sol–gel method had been undertaken. As K content increases the crystal structures were transformed from orthorhombic to rhombohedral structure identified by X-ray diffraction, and the effect of increasing K ion is to increment the Mn–O–Mn bond angle. The surface morphology was investigated by scanning electron microscope, which indicates that grain size decreasing with increasing of K+. Temperature dependence of resistivity (ρ ? T) was measured by standard four-probe method. The insulator–metal transition temperature (T P ) shifted to higher temperature and the temperature coefficient of resistivity decreased sharply with the substitution K+ for Ca2+ ion. The temperature dependence of magnetization (M–T) shown that Curie temperature (T C ) was increasing with the increase of K content, which can be explained by enhancement of double–exchange interaction. The data of resistivity on low-temperature (T?<?T P ) had been fitted with the relation ρ(T) = ρ 0?+?ρ 2T2?+?ρ 4.5T4.5; the high-temperature (T?>?T P ) resistivity data were explained using small-polaron hopping and variable-range hopping models. Resistivity data in whole temperature range (100–320 K) could be fitted by percolation model. Polaron activation energy E a was found to decrease with the content K+ increasing, which suggested that K doping increase bond angle Mn–O–Mn, thereby the effective band gap was decreased and the double exchange coupling was increased of, this is the reason for the decrease of resistivity.  相似文献   

4.
The ceramic compositions Ba3−xSrxLiM3Ti5O21[M=Nb and Ta, x = 0 to 3] were prepared through conventional solid state ceramic route. A detailed study has been carried out to correlate the structure of Ba3−xSrxLiM3Ti5O21[M=Nb and Ta, x = 0 to 3] with respect to their dielectric properties. The structure and microstructure of ceramic samples were studied using powder X-ray diffractometer and Scanning Electron Microscopic techniques. The dielectric properties of the sintered ceramic compacts have been studied. The Ba-rich compositions were identified as promising candidates for high frequency applications whereas the Sr-rich compositions were excellent ionic conductors and can be commercially exploited for applications in solid-state batteries.  相似文献   

5.
Polycrystalline lead-free (Na0.46Bi0.46Ba0.08)(MnxTi1?xO3)?+?0.2CuO ceramics (x?=?0.0, 0.5, 2.0, 3.0 wt%) were prepared via solid-state reaction method. X-ray diffraction (XRD) analysis confirmed the formation of single-phase perovskite structure and indicated the presence of morphotropic phase boundary, where the tetragonal and rhombohedral phases co-existed for all the synthesized compositions. Scanning electron microscopy (SEM) analysis revealed that the average grain size decreased with the increase in Mn content. Impedance spectroscopy (IS) indicated that Mn doping was found to decrease the grain boundary resistance. Two semi-circles were observed for higher Mn content which indicates the contribution of both bulk grains and grain boundaries. Non-Debye type and temperature dependent relaxation phenomenon was also revealed by IS studies. The activation energies at different frequencies were found to be 0.05–0.9 eV, indicating hopping charge conduction mechanism. These results have comprehensive implications for the expanded use of BNT based lead free piezoelectric ceramics for practical applications.  相似文献   

6.
In this paper, Cr-doped Bi0.9Ba0.1Fe1?xCrxO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ceramic materials were prepared by traditional state solid synthesized method, and the effects of Cr3+ ion on magnetic and dielectric properties were investigated. All samples showed BiFeO3 phase formation were successful synthesized. The SEM images showed the shape of samples changed from regular to irregular shape. With increasing of Cr2+ ions, Saturation magnetization (M s) increased from 5.24 to 8.6 emu/g, and then decreased to 7.31 emu/g, and coercivity (H c) increased from 110.66 to 256.49 Oe. All the samples showed high dielectric constants at low frequency and the values of dielectric constants decreased slightly with frequency increasing. Delectric loss (tanδ) values kept a steady in a wide range frequency of 10–600 MHz. They ranged in tanδ from 0.01 to 0.07, which was a low dielectric loss in Bi0.9Ba0.1Fe1?xCrxO3 ceramics.  相似文献   

7.
In the case of Ti4+ remain unchanged, the Ca2+ substituted Ba0.75?xCaxLa0.25Fe11.6Co0.25Ti0.15O19 (0?≤?x?≤?0.05) were prepared by conventional solid-state reaction method at temperature of 1280 °C. A ball-to-power weight ratio of 10:1. Their crystal structure and magnetic properties were mainly investigated. The results show that the single magnetoplumbite phase structure transformed into the multiphase structure. Meanwhile, the small amount of α-Fe2O3 phase existed in M-type phase. The micrographs were observed by a field emission scanning electron microscopy (SEM). Vibrating sample magnetometer (VSM) was used to analyze the magnetic properties. The saturation magnetization (M s ) first increases then decreases when x from 0 to 0.03. But, when x from 0.03 to 0.05, the saturation magnetization (M s ) first increases then decreases too. The maximum value is at x?=?0.04 (M s ?=?70.73 emu/g). The value of coercivity (H c ) first increases then decreases when x from 0 to 0.04. But, the value increased when x from 0.04 to 0.05. The maximum value is at x?=?0.02 (H c ?=?1691 Oe).  相似文献   

8.
The effects of Ni doping on the physical properties of the newly discovered layered superconductor Bi4O4S3 are studied. X-ray diffraction data indicates that the lattice constants a and c decrease with the increasing Ni doping. From resistivity-temperature curves, the superconducting transition temperature (\(T_{c}^{\text {onset}})\) is suppressed by only 0.5 K with the increase of Ni doping from 0.075 to 0.15; the \(T_{c}^{\text {zero}}\) is almost the same constant at different Ni ions’ doping level. The magnetic susceptibility results suggest the coexistence of superconductivity and ferromagnetism in this system. A possible superconductivity transition is observed around ?14 K from M-T (FC) curves in x = 0.125, 0.15 samples, which may result from the doped magnetic Ni ions.  相似文献   

9.
In this work, (Pb1?xLax)(Zr0.60Ti0.40)O3 (PLZT x/60/40, x?=?at.%) ceramics were prepared by using high energy mechanical ball milling followed by cold isostatic pressing (CIP), investigated for their micro-structural, dielectirc, ferroelectric and piezoelectric properties. Mechanical activation results in the highly reactive nature of the nano size milled PLZT powders, which enables the partial perovskite phase formation, confirmed by room temperature XRD patterns. CIP leads to a higher density with a closely packed dense microstructure of sintered PLZT ceramics shown in SEM images. The grain size of PLZT x/60/40 ceramics was found to be decreasing with increasing La3+ content. The highest relative density of ~?97% was found to be for PLZT 8/60/40 ceramics with grain size of ~?1.35 µm. The PLZT 8/60/40 system also shows the highest dielectric constant of ~?1976, remnant polarization of 29.1 µC/cm2, piezoelectric coefficients (d33?\(~ \cong ~\)?570 pC/N, g33?\(~ \cong ~\)?28.03?×?10?3 Vm/N) and electromechanical coupling factors (kp?=?k33?=?64.1% and k31?=?54%). The elastic compliances for the PLZT x/60/40 ceramics were also obtained.  相似文献   

10.
Cobalt substituted strontium ferrites SrCoxFe12?xO19 (x = 0.1, 0.2 and 0.3) were synthesized via sol–gel method and the dried gel obtained was annealed at 800 °C. The powder X-ray diffraction studies helped in the determination of the crystallite size that measured ≈ 12–14 nm. The optical properties of the powdered nanoparticles were determined by means of the UV–Vis absorption spectra of their dispersed solutions in liquid media. Despite these measurements, it was difficult to determine their band gap (Eg) precisely. However, the Kubelka–Munk treatment on the diffuse reflectance spectra of the powdered nanoparticles was used in order to extract their Eg unambiguously. The Co substituted strontium hexaferrites are used for optical studies. The energy band gap for all the ferrite compositions was found to be ≈ 1.46–1.78 eV. The study made on the dielectric behaviour of the substituted SrFe12O19 is also discussed in this paper.  相似文献   

11.
An exhaustive study of structural, magnetic and magnetocaloric properties on La1.95Sr0.05BMnO6 (B?=?Ni and Co) double perovskite were performed. The samples were prepared by the sol–gel method. The crystallographic structure was studied by the X-ray diffraction patterns and Rietveld refinement which revealed that all samples crystallize in a monoclinic structure with P21/n space group. The magnetic behaviors of these double perovskite have been studied in detail. For La1.95Sr0.05NiMnO6, the M(T) curves exhibit double magnetization transition temperature at 68 K and 266 K which can be ascribed to Ni3+–O–Mn3+ and Ni2+–O–Mn4+ superexchange interaction, respectively. However, unique magnetic transition has been observed for the La1.95Sr0.05CoMnO6 double perovskite at 210 K due to Co2+–O–Mn4+ superexchange interaction. A deep investigation based on the Landau Theory and Arrot analysis confirmed a second order ferromagnetic phase transition for both samples. Besides, the magnetocaloric behaviors of these new samples have been studied by analysis the magnetic entropy change. This latter reached maximum values of 1.01 and 1.35 J/kg/K for La1.95Sr0.05NiMnO6 and La1.95Sr0.05CoMnO6, respectively, under µ0H?=?5 T. Moreover, the relative cooling power values for La1.95Sr0.05NiMnO6 and La1.95Sr0.05CoMnO6 are found to be 94 J/kg and 116 J/kg, respectively, under µ0H?=?5 T. Based on the obtained ΔSM data, we have also described the universal master curve for (ΔSM/\(\Delta S_{M}^{{\hbox{max} }}\)) versus rescaled temperature to confirm the order magnetic phase transition. Interestingly, all the ΔSM(T, H) data points are collapsed into a universal curve in the whole temperature range. The significant values of relative cooling power for both samples suggest that they might be an interesting candidate for exploring a new kind of magnetic refrigerants.  相似文献   

12.
The effect of Ni doping in BiFe1?xNixO3 (BFNO) multiferroics are studied by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), hysteresis loop (M–H), temperature dependent magnetization (FC-ZFC) measurements and electron spin resonance (ESR) techniques. The XRD and FTIR studies indicate that the BFNO compounds remain in rhombohedral (R3c) phase without appearance of any structural transformation due to Ni doping. The XPS studies show the oxidation states of Fe ions as 3+, whereas Bi is found to be in a mixed valence state of 2+ and 3+ in BFNO. The Ni ion doping enhances the saturation magnetization from 0.179 emu/g (x?=?0.025) to 2.38 emu/g (x?=?0.20), which is higher than the reported values found in literature. The FC-ZFC magnetization studies suggest the presence of a magnetic phase transition from a weak ferromagnetic to a spin glass state at low temperature. The ESR studies confirm the ferromagnetic state of BFNO samples.  相似文献   

13.
In order to study the effect of co-substitution of Al3 + and Cr3 + for Fe3+ in MgFe2O4 on its structural and magnetic properties, the spinel system MgAl x CrxFe2 ? 2xO4 (x = 0.0–0.8) has been characterized by X-ray diffraction, high field magnetization, low field a.c. susceptibility and 57Fe Mössbauer spectroscopy measurements. Contrary to the earlier reports, about 50% of Al3 + is found to occupy the tetrahedral sites. The system exhibits canted spin structure and a central paramagnetic doublet was found superimposed on the magnetic sextet in the Mössbauer spectra (0.5 > x > 0.2). Thermal variation of a.c. susceptibility exhibits normal ferrimagnetic behaviour.  相似文献   

14.
Doubly doped LaErO3 ceramics, La0.9Ba0.1Er1−x Mg x O3−α (x = 0.05, 0.10, 0.15, 0.20), were synthesized by solid-state reaction method and characterized by X-ray diffraction (XRD). The samples have a single orthorhombic perovskite-type structure. The conduction behavior was investigated using various electrochemical methods including AC impedance spectroscopy, gas concentration cell, isotope effect of hydrogen, and hydrogen electrochemical permeation (pumping) in the temperature range of 500–1000 °C. The results indicated that specimens were pure ionic conductors under low oxygen partial pressure (about 10−7–10−20 atm) and mixed conductors of proton, oxide ion, and electron hole under high oxygen partial pressure (about 10−5–1 atm). The pure ion conduction of the ceramics in hydrogen atmosphere was confirmed by electromotive force method of hydrogen concentration cell, and the observed emf values coincided well with the theoretical ones. The conductivity in H2O–Ar atmosphere was higher than that in D2O–Ar atmosphere, exhibiting an obvious isotope effect and proton conduction in water vapor containing atmosphere. It has been confirmed by electrochemical hydrogen permeation (hydrogen pumping) experiment that the ceramics were mainly proton conductors in hydrogen containing atmosphere. Whereas in dry oxygen-containing atmosphere, observed emf values of the oxygen concentration cell were far lower than the theoretical ones, indicating that the ceramics were mixed conductors of electron hole and oxide ion.  相似文献   

15.
SrCo1 − x FexO3 − δ solid solutions with 0.3 ≤ x ≤ 0.9 are shown to have the cubic perovskite structure. The unit-cell parameter and volume of the solid solutions are nonmonotonic functions of Fe content, with a minimum at x = 0.4. Dilatometric data are used to determine the thermal expansion coefficients of the solid solutions. At low oxygen partial pressures ( ≤ 40 Pa), the high-temperature, disordered perovskite phase exists between 850 and 1000°C, which is the optimal temperature range for the effective use of SrCo1 − x FxO3 − δ ceramics as oxygen membranes in oxygen partial pressure gradients of 104–105/10–100 Pa.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 998–1004.Original Russian Text Copyright © 2005 by Kokhanovskii, Zonov, Ol’shevskaya, Pan’kov.  相似文献   

16.
The polycrystalline samples with nominal composition Eu0.5Sr0.5Mn1?x Cr x O3 (0 ≤ x ≤ 0.1) were prepared by the conventional solid state reaction method and characterized by X-ray diffraction, scanning electron microscopy and electrical resistivity behavior without and with magnetic field. The structural parameters obtained by using Rietveld refinement of X-ray diffraction data showed that all samples crystallize with orthorhombic perovskite type symmetry with Pbnm space group. The scanning electron micrograph images reveal that the increase in Cr substitution hinders grain growth and grain connectivity. The temperature dependence of electrical resistivity show the semiconducting nature of these compounds and support the small polaron hoping model and variable range hopping conduction model. The calculated hopping distance and activation energy decreased as rate of Cr content increased whereas density of states at Fermi level increased. A large negative magnetoresistance is also present in the sample at the lowest temperature of measurements.  相似文献   

17.
Nd1?xBaxCoO3 (0?≤?x?≤?0.2) ceramics was synthesized by solid state reaction. All the samples have an orthorhombic perovskite structure (Space group P n m a). The electrical transport property indicates that Ba doped NdCoO3 ceramics goes through semiconductor–metal phase transition. The electrical resistivity of Nd1?xBaxCoO3 (0?≤?x?≤?0.15) ceramics decreases, while the electrical resistivity of Nd0.8Ba0.2CoO3 ceramics increases with the increase of temperature. The chemical-sensing property shows that Nd1?xBaxCoO3 ceramics is very sensitive to oxygen. Also, increasing Ba2+ doping concentration can reduce the oxygen desorption rate and increase the sensitivity of resistivity. These results indicate that Ba2+ doped NdCoO3 ceramics is not only the good candidate of the cathode materials of solid fuel cells but also the good materials of gas sensor devices.  相似文献   

18.
Here in, we report the charge transport mechanism in semiconducting La0.5Ca0.5Mn0.5Fe0.5O3 (LCMFO) polycrystalline material synthesized via sol–gel auto combustion route. X-ray diffraction (XRD) analysis confirmed the orthorhombic phase of the prepared material. Temperature dependent resistivity and impedance spectroscopy measurements have been carried out to probe the dielectric and electrical conduction mechanism which revealed a change of Mott variable range to the small polaronic hopping conduction mechanism around 303 K. The complex impedance and modulus spectra undoubtedly showed the contribution of both grain and grain boundary effect on the conduction properties of LCMFO. An equivalent circuit [(RgbQgb) (RgQg)] model has been used to address the electrical parameters associated with the different phases (grains and grain boundaries) having different relaxation times. The values of resistances of two phases obtained after fitting the equivalent circuit in the nyquist plot have been analyzed which confirmed the change of conduction mechanism around 303 K. The resultant change in conduction mechanism is also supported by the conductivity plots.  相似文献   

19.
The La1?xSrxCrO3 (x?=?0–0.1) negative temperature coefficient (NTC) ceramics have been prepared by the traditional solid state reaction method. X-ray diffraction (XRD) analysis has revealed that the as-sintered ceramics crystallize in a single perovskite structure. Scanning Electron Microscope (SEM) images show that the doped Sr2+ contributes to in the decrease in porosity. X-ray photoelectron spectroscopy (XPS) analysis indicates the existence of Cr3+ and Cr6+ ions on lattice sites, which result in hopping conduction. The presence of the Cr6+ is one of the key factors that affect the electrical conductivity of La1?xSrxCrO3. Resistance–temperature characteristics were studied in the range of ?80 to 10?°C for the ceramic samples, the electrical characterizations show that the electrical resistivity and material constant B decrease with the increase of the strontium content.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号