首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, natural materials (sodium alginate, dextran, gelatin and carboxymethyl chitosan) were modified to get aldehyde components and amino components. Upon mixing the two-component solutions together, four kinds of Schiff base hydrogels formed successfully within 5-300 s and could seal the wound tissue. The cytotoxicity tests of hydrogel extraction solution confirmed that the hydrogels are nontoxic materials. The adhesive ability was evaluated in vivo by measuring the adhesive strength after sealing the skin incisions on the back of rats. All the hydrogels showed higher adhesive strength than that of commercial fibrin glue and the blank control. The histological staining observation by hematoxylin and eosin staining (HE) and Masson’s trichrome staining (MTC) methods suggested that the hydrogels had good biocompatibility and biodegradation in vivo. They have only normal initial inflammation to skin tissue and could improve the formation of new collagen in the incision section. So, the prepared hydrogels were both safe and effective tissue adhesive, which had the great potentials to be used as skin tissue adhesive.  相似文献   

2.
Based on the Arrhenius equation, a method to calculate the activation energy from the resistance transition is proposed for high temperature superconductors. This method is applied to the Y-based superconductors. The activation energy is found to be U(T,H)∼(1−T/T c )4.8(H/H 0)−3.8 of YBCO crystal, and U(T,H)∼(1−T/T c )3.3(H/H 0)−2.2 of Er doped MTG YBCO crystal, respectively. With the obtained activation energy U(T,H), the lower part of the experimental curve ρ(T,H) and its derivative can be reproduced.   相似文献   

3.
Porous-conductive chitosan scaffolds were fabricated by blending conductive polypyrrole (PPy) particles with chitosan solution and employing an improved phase separation method. In vitro and in vivo degradation behaviors of these scaffolds were investigated. In the case of in vitro degradation, an enzymatic degradation system was employed and lysozyme was used as a working enzyme. Meanwhile, the degradation products of scaffolds, glucosamine and N-acetyl-glucosamine, were also analyzed with a HPLC method. In vivo degradation of scaffolds was performed by subcutaneously implanting these scaffolds in rat for prescheduled time intervals. In the both cases, the weight-loss of scaffolds was monitored during the whole degradation process for evaluating the degradation of scaffolds. The changes in conductivity of scaffolds afterin vitro or in vivo degradation were also measured using a four-point technique. It was observed that the pore parameters of scaffolds themselves could significantly influence the degradation behaviors of scaffolds but the PPy content in the scaffolds seemed not to impart its effect to the degradation of scaffolds. Degradation dynamics of scaffolds and conductivity measurements indicated that these scaffolds shown fairly different behaviors in their in vitro and in vivo degradation process. According to the results obtained from in vitro and in vivo degradation of scaffolds and based on some requirements of practical tissue engineering application, it was suggested that the PPy content in the scaffold should be slightly higher than 3 wt.% but lower than 6 wt.%.  相似文献   

4.
Photodiodes sensitive in the wavelength ranges 1–2.5 μm and 1–4.8 μm at room temperature have been created on the basis of n-GaSb/n-GaInAsSb/p-AlGaAsSb double-junction heterostructures of two types. The broadband photosensitivity of the diode structures of both types is indicative of the complete separation of photogenerated electron-hole pairs in the staggered n-p heterojunction (n-GaInAsSb/p-AlGaAsSb). The noise characteristics of photodetectors based on the proposed diode structures have been studied. Prospects of the use of these devices in thermophotovoltaic cells for low-temperature radiation sources are considered.  相似文献   

5.
This study evaluated the surface microhardness of four glass ionomer cements and a composite resin (Fuji IX, Ketac Molar, Vidrion R, Vitromolar and Z 250). Ten specimens of each glass ionomer cement with 8.0 mm diameter and 5.0 mm high dimensions were made and Vicker’s microhardness measurements were taken at 1 day and 1 week after initial setting reaction. The results were analyzed using Student’s T test and Tukey test (p < 0.05) and demonstrated that the values of microhardness increased after 1 week, with the exception of Fuji IX. Resin composite Z250 presented the greatest values for microhardness.  相似文献   

6.
We have studied electroluminescence in n-GaSb/n-AlGaAsSb/n-GaInAsSb heterostructures with isotype heterojunctions, in which the quantum efficiency of emission is increased due to the additional production of electron-hole pairs as a result of the impact ionization that takes place near the heterointerface. The impact ionization in such heterostructures is possible due to the presence of deep wells in the energy band structure.  相似文献   

7.
In this study short-term in vitro and in vivo biocompatibility apects of a biodegradable polyurethane (PU) foam were evaluated. The PU consists of hard urethane segments and amorphous soft segments based on a copolyester of dl-lactide and -caprolactone. The urethane segments are of uniform length and synthesized with 1,4-butanediisocyanate. The foam has good mechanical properties and will be used for tissue regeneration applications. Degradation tests were carried out in a buffer solution for twelve weeks. Cytotoxicity was determined using extract and direct contact test methods with incubation periods varying form 24 to 72 h. The foam was implanted subcutaneously for one, four and twelve weeks and the tissue response to the material was histologically evaluated.In vitro, the mass loss was 3.4% after twelve weeks. In the cytotoxicity tests the PU caused no abnormal growth behaviour, nor morphological changes or inhibition in metabolic activity. The in vivo studies showed no toxic tissue response to the PU. Connective tissue ingrowth, accompanied by vascular ingrowth was complete at twelve weeks. In vivo degradation had started within four to twelve weeks.In conclusion, the PU shows a good in vitro and in vivo biocompatibility in these short-term experiments.  相似文献   

8.
The state of the art in the search for novel superhard and (or) incompressible materials on the basis of higher borides of s, p, d metals has been briefly reviewed. The information has been considered about experimental and theoretical studies of the following groups of borides: diborides of 4d, 5d heavy metals (Tc, Ru, Rh, Re, Os, and Ir), hexagonal tetraborides with the WB4-type structure, and AMB14 borides (where A, M are s, p metals) as well as of a number of related systems.  相似文献   

9.
Small interfering RNA (siRNA) is an attractive therapeutic candidate for sequencespecific gene silencing to treat incurable diseases using small molecule drugs.However,its efficient intracellular delivery has remained a challenge.Here,we have developed a highly biocompatible fluorescent carbon dot (CD),and demonstrate a functional siRNA delivery system that induces efficient gene knockdown in vitro and in vivo.We found that CD nanoparticles (NPs) enhance the cellular uptake of siRNA,via endocytosis in tumor cells,with low cytotoxicity and unexpected immune responses.Real-time study of fluorescence imaging in live cells shows that CD NPs favorably localize in cytoplasm and successfully release siRNA within 12 h.Moreover,we demonstrate that CD NP-mediated siRNA delivery significantly silences green fluorescence protein (GFP) expression and inhibits tumor growth in a breast cancer cell xenograft mouse model of tumor-specific therapy.We have developed a multi functional siRNA delivery vehicle enabling simultaneous bioimaging and efficient downregulation of gene expression,that shows excellent potential for gene therapy.  相似文献   

10.
This paper describes an improved experimental facility for measuring the speed of sound in liquids with an accuracy of up to 0.1%. Measurements of the speed of sound in liquid n-hexane, n-octane, n-decane, and n-hexadecane at temperatures of 298–433 K and pressures of 0.1–100 MPa have been made. It has been shown that in the possible comparison range the obtained values of the speed of sound are in good agreement with the literature data. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 81, No. 4, pp. 732–736, July–August, 2008.  相似文献   

11.
Implant-associated infections can cause serious complications including osteomyelitis and soft tissue damage, and are a great problem due to the emergence of antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). In some cases, antibiotic-loaded beads which release the antibiotic locally have been used, however such systems may lead to the development of antibiotic-resistant bacteria, as seen with gentamicin-loaded beads. Hence modifying the actual metal implant surface to inhibit or reduce initial bacterial adhesion may be an alternative option. This study describes the visualisation and quantification of S. aureus adhering to standard micro-rough ‘commercially pure’ titanium (TS) and Ti-6Al-7Nb (NS) surfaces, electropolished titanium (TE) and Ti-6Al-7Nb (NE) surfaces, and standard electropolished stainless steel (SS). Qualitative and quantitative results of S. aureus on the different surfaces correlated with each other, and showed significantly more live bacteria on NS than on the other surfaces, whilst there was no significant difference between the amount of bacteria on TS, TE, NE and SS surfaces. The results showed a significant decrease in the amount of bacteria adhering to the NE compared to standard NS surfaces. Such an observation suggests that the NS surface encouraged S. aureus adhesion, and could lead to higher infection rates in vivo. Hence electropolishing Ti-6Al-7Nb surfaces could be advantageous in osteosynthesis areas in minimising bacterial adhesion and lowering the rate of infection.  相似文献   

12.
Chitosan/nano-hydroxyapatite composites with different weight ratios were prepared through a co-precipitation method using Ca(OH)2, H3PO4 and chitosan as starting materials. The properties of these composites were characterized by means of TEM, IR, XRD, burn-out test and universal matertial test machine. Additionally, in vitro tests were also conducted to investigate the biodegradability and bioactivity of the composite. The results showed that the HA synthesized here was poorly crystalline carbonated nanometer crystals and dispersed uniformly in chitosan phase and there is no phase-separation between the two phases. Because of the interactions between chitosan and n-HA, the mechanical properties of these composites were improved, and the maximum value of the compressive strength was measured about 120 MPa corresponding to the chitosan/n-HA composite with a weight ratio of 30/70. The specimens made of 30/70 chitosan/n-HA composite exhibit high biodegradability and bioactivity when being immersed in SBF solutions. The composite is appropriate to being used as scaffold materials for bone tissue engineering. © Springer Science + Business Media, Inc.  相似文献   

13.
The mechanical and superconducting properties of the Fe diffusion-doped (Bi-Pb)-2223 superconductor have been investigated. First, iron was evaporated on Bi-2223 superconductor and then the Fe layered superconductor was annealed at 830 °C for 10, 30 and 60 h. Static Vickers hardness, dc electrical resistivity, X-ray diffraction and scanning electron microcopy have been carried out to assess the effects of Fe doping. These measurements indicates that Fe doping, in comparison with the undoped samples, increased the critical transition temperature, and improved formation of high T c phase, while decreasing the number and size of voids. Moreover, both microhardness and grain size were also enhanced by increasing the amount of diffusion. The values of microhardness were found to be load dependent. In addition, we have investigated the indentation size effect (ISE) behavior using some models such as the Kick’s law, modified proportional specimen resistance (MPRS) model and the Hays- Kendall (HK) approach. Among them, both HK and MPRS models are successful. In this study, the possible reasons of noticed improvement on mechanical and physical properties due to iron diffusion are discussed.  相似文献   

14.
RNA plays important roles as a gene-silencing agent, a therapeutic agent for clinical treatment, and in the differentiation, proliferation, and development of cells. However, RNA is very difficult to work with due to its sensitivity and fragility. Another obstacle in using RNA for gene delivery/silencing is its negative charge, which causes its repulsion by cell membranes, which are also negatively charged. Our recent study showed that miR-125b is upregulated in glioblastoma (GMB) and plays an oncogenic role in GMB cells by promoting cell proliferation and inhibiting apoptosis. Endogenous miR-125b can be blocked by transfection of its antisense RNA molecule, miR-125b antisense (miR-125b-AS). Thus, miR- 125b-AS can be developed as an RNA-based agent for cancer treatment. However, instability during storage and difficulty in delivery into cells has limited the use of RNA-based therapies thus far. In the current work, we demonstrate a short and simple one-step technique for the preparation of positively charged RNA nanospheres (miR-125b-RNS and miR-125b-AS-RNS) coated with a bioavailable polymer, polyethylenimine (PEI). These RNA nanospheres are able to penetrate the cell directly without the use of liposomes. Our study confirmed that converting miR-125b and miR-125b-AS into nanospheres is a viable approach for storing RNA. In addition, this study provides evidence that PEI-coated RNA nanospheres have the potential to be used as a novel class of anticancer agents.
  相似文献   

15.
The time-dependent Ginzburg–Landau equation with thermal noise is used to calculate the Nernst signal e N , describing the Nernst effect, in type-II superconductor in the vortex-liquid regime. The Gaussian method used is an elaboration of the Hartree–Fock method. An additional assumption often made in analytical calculations that only the lowest Landau level significantly contributes to physical quantities of interest in the high-field limit is lifted by including all the Landau levels. The values of e N are in good quantitative agreement with experimental data for temperature close to T c on Bi2Sr2CaCu2O8+δ and Bi2Sr2Ca2Cu3O10+δ .  相似文献   

16.
The possibility of creating a new scheme of a laser-pumped quantum magnetometric device based on a double-beam M X magnetometer is considered. The proposed system ensures the simultaneous measurement of the modulus of the Earth’s magnetic field vector (with an absolute accuracy of 0.02 nT) and two angles of deviation of this vector with an absolute accuracy and sensitivity of not worse than 0.4″ (0.1 nT) at a measurement time of τ = 1 s. In contrast to the known analogous systems, the proposed scheme does not require generating additional magnetic fields.  相似文献   

17.
In the present study, silica-calcium phosphate composites (SiO2-CaP composites) were developed by mixing the starting materials (SiO2 and CaHPO4) in different ratios with the addition of 0.1% w/v NaOH solution. The phase composition of the SiO2-CaP composites was determined by XRD and FTIR. After thermal treatment at 350 ^C/1 h and at 1000 ^C/3.5 h; all SiO2-CaP composites composed of -quartz, -cristobalite and -Ca2P2O7. The presence of calcium phosphate enhanced the transformation of -quartz into -cristobalite at 1000 ^C. SEM observation indicated favorable attachment and spreading of neonatal rat calvaria osteoblasts onto the surface of silica-rich SiO2-CaP composites. After attachment, these cells produced significantly higher amount of protein and expressed higher AP activity than cells attached to silica-poor samples. Results of the study suggested that the silica-based composites are more bioactive than calcium phosphate-based composites. Silica promoted the expression of osteoblast phenotype by both solution-mediated effect and direct interaction with the surface of the substrate.  相似文献   

18.
Thermodynamic modeling of the chemical vapor deposition of boron-carbonitride-based films in the B-C-N-H-O system using mixtures of N-trimethylborazine and nitrogen is carried out for reduced pressures (13.3 and 1.33 Pa) and a wide temperature range (300–1300 K). The source of oxygen impurities in this system is a residual pressure of 0.40 Pa. The results indicate that films of various compositions can be grown. The conditions for the deposition of BC x N y films are identified.  相似文献   

19.
Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.  相似文献   

20.
A topological mechanism of hole localization as two skyrmions in the CuO2 layers of high-T c superconductors is suggested on the basis of a nonlinear σ model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号