首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The limited repair potential of articular cartilage, which hardly heals after injury or debilitating osteoarthritis, is a clinical challenge. The aim of this work was to develop a novel type I collagen (Col)/glycosaminoglycan (GAGs)-porous titanium biphasic scaffold (CGT) and verify its ability to repair osteochondral defects in an animal model with bone marrow stem cells (bMSCs) in the chondral phase. The biphasic scaffold was composed of Col/GAGs as chondral phasic and porous titanium as subchondral phasic. Twenty-four full-thickness defects through the articular cartilage and into the subchondral bone were prepared by drilling into the surface of the femoral patellar groove. Animals were assigned to one of the three groups: 1) CGT with bMSCs (CGTM), 2) only CGT, and 3) no implantation (control). The defect areas were examined grossly, histologically and by micro-CT. The most satisfied cartilage repairing result was in the CGTM group, while CGT alone was better than the control group. Abundant subchondral bone formation was observed in the CGTM and CGT groups but not the control group. Our findings demonstrate that a composite based on a novel biphasic scaffold combined with bMSCs shows a high potential to repair large osteochondral defects in a canine model.  相似文献   

2.
In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials.  相似文献   

3.
骨软骨缺损是导致关节发病和残疾的重要原因,骨软骨组织工程是修复骨软骨缺损的方法之一。骨软骨组织工程方法涉及仿生梯度支架的制造,该支架需模仿天然骨软骨组织的生理特性(例如从软骨表面到软骨下骨之间的梯度过渡)。在许多研究中骨软骨仿生梯度支架表现为离散梯度或连续梯度,用于模仿骨软骨组织的特性,例如生物化学组成、结构和力学性能。连续型骨软骨梯度支架的优点是其每层之间没有明显的界面,因此更相似地模拟天然骨软骨组织。到目前为止,骨软骨仿生梯度支架在骨软骨缺损修复研究中已经取得了良好的实验结果,但是骨软骨仿生梯度支架与天然骨软骨组织之间仍然存在差异,其临床应用还需要进一步研究。本文首先从骨软骨缺损的背景、微尺度结构与力学性能、骨软骨仿生梯度支架制造相关的材料与方法等方面概述了离散和连续梯度支架的研究进展。其次,由于3D打印骨软骨仿生梯度支架的方法能够精确控制支架孔的几何形状和力学性能,因此进一步介绍了计算仿真模型在骨软骨组织工程中的应用,例如采用仿真模型优化支架结构和力学性能以预测组织再生。最后,提出了骨软骨缺损修复相关的挑战以及骨软骨组织再生未来研究的展望。例如,连续型骨软骨仿生梯度支架需要更相似地模拟天然骨软骨组织单元的结构,即力学性能和生化性能的过渡更加自然地平滑。同时,虽然大多数骨软骨仿生梯度支架在体内外实验中均取得了良好的效果,但临床研究和应用仍然需要进行进一步深入研究。  相似文献   

4.
The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.  相似文献   

5.
In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of osteochondral lesions. For this purpose, the ideal scaffold should possess the right properties with respect to degradation, cell binding, cellular uptake, non-immunogenicity, mechanical strength, and flexibility. In addition, it should be easy to handle and serve as a template for chondrocyte and bone cells guiding both cartilage and bone formation. The aim of the present study was to estimate the chondrogenic and osteogenic capability of bone marrow concentrated derived cells seeded onto a novel nano-composite biomimetic material. These properties have been evaluated by means of histological, immunohistochemical and electron microscopy analyses. The data obtained demonstrated that freshly harvested cells obtained from bone marrow were able, once seeded onto the biomaterial, to differentiate either down the chondrogenic and osteogenic pathways as evaluated by the expression and production of specific matrix molecules. These findings support the use, for the repair of osteochondral lesions, of this new nano-composite biomimetic material together with bone marrow derived cells in a “one step” transplantation procedure.  相似文献   

6.
Regeneration of osteochondral tissue is of great potentialities in repairing severe osteochondral defects. However, anisotropic physiological characteristics and tissue linage difference make the regeneration of osteochondral tissue remain a huge challenge. Herein, a multicellular system based on a bilayered co-culture scaffold mimicking osteochondral tissues was successfully developed for an alternative of osteochondral regeneration via a 3D bioprinting strategy. The dual function of integrally repairing both cartilage and bone could be achieved by designing multiple-cells distribution and a cell-induced bioink containing bioceramic particles. As an important bioactive agent, the Li-Mg-Si bioceramics-containing bioink exhibited the function of simultaneously stimulating multiple cells for differentiation towards specific directions. The 3D bioprinted co-culture scaffolds showed the capacity for osteochondral tissue regeneration by inducing osteogenic and chondrogenic differentiation in vitro and accelerating the repair of severe osteochondral defects in vivo. This study offers a potential strategy for complex tissue reconstruction through bioprinting multiple tissue cells in combination of bioceramics-stimulating bioinks.  相似文献   

7.
The key factor for regenerating large segmental bone defects through bone tissue engineering is angiogenesis in scaffolds. Attempts to overcome this problem, it is a good strategy to develop a new scaffold with bioactivity to induce angiogenesis in bone tissue engineering. In our previous research, the ability of strontium-doped calcium polyphosphate (SCPP) to stimulate the release of angiogenic growth factors from cultured osteoblasts was studied. This study was performed to determine the ability of SCPP to induce angiogenesis within in vitro co-culture model of human umbilical vein endothelial cells (HUVEC) and osteoblasts co-cultured. The bioactivity of developed scaffolds to induce angiogenesis in vivo was also researched in this paper. Co-cultured model has been developed in vitro and then cultured with SCPP scaffold as well as calcium polyphosphate (CPP) scaffold and hydroxylapatite (HA) scaffold. The results showed that the optimal ratio of HUVEC and osteoblasts co-cultured model for in vitro angiogenesis was 5:1. The model could maintain for more than 35 days when cultured with the scaffold and show the best activity at 21st day. Compared with those in CPP and HA scaffold, the formation of tube-like structure and the expression of platelet endothelial cell adhesion molecule in co-cultured model is better in SCPP scaffold. The in vivo immunohistochemistry staining for VEGF also showed that SCPP had a potential to promote the formation of angiogenesis and the regeneration of bone. SCPP scaffold could be served as a potential biomaterial with stimulating angiogenesis in bone tissue engineering and bone repair.  相似文献   

8.
Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on either single scaffold. Therefore, a bi-layered composite scaffold is an appropriate candidate for fabrication of osteochondral tissue.  相似文献   

9.
Tissue engineering has been developed as a prospective approach for the repair of articular cartilage defects. Engineered osteochondral implants can facilitate the fixation and integration with host tissue, and therefore promote the regeneration of osteochondral defects. A biphasic scaffold with a stratified two-layer structure for osteochondral tissue engineering was developed from biodegradable synthetic and naturally derived polymers. The upper layer of the scaffold for cartilage engineering was collagen sponge; the lower layer for bone engineering was a composite sponge of poly(DL-lactic-co-glycolic acid) (PLGA) and naturally derived collagen. The PLGA–collagen composite sponge layer had a composite structure with collagen microsponge formed in the pores of a skeleton PLGA sponge. The collagen sponge in the two respective layers was connected. Observation of the collagen/PLGA–collagen biphasic scaffold by scanning electron microscopy (SEM) demonstrated the connected stratified structure. The biphasic scaffold was used for culture of canine bone-marrow-derived mesenchymal stem cells. The cell/scaffold construct was implanted in an osteochondral defect in the knee of a one-year old beagle. Osteochondral tissue was regenerated four months after implantation. Cartilage- and bone-like tissues were formed in the respective layers. The collagen/PLGA–collagen biphasic scaffold will be useful for osteochondral tissue engineering.  相似文献   

10.
This study aims to produce an osteochondral plug with three distinct layers resembling the naturally occurring cartilage, tidemark, and subchondral zones, for the regeneration of defects of articular cartilage. The bone layer is constructed from a PLLA/PCL polymeric blend using a dual‐porogen approach. The pore surfaces are coated with type‐I collagen and hydroxyapatite. The upper layer, made of PGA nonwoven felt, is combined with the lower using a polymeric blend with a pigment for better visualization during implantation. Vertical channels are formed from the bottom layer to the upper border of the tidemark to facilitate the delivery of stem cells and blood from the bone marrow when implanted. The Young's modulus of the osteochondral plugs is 94.5 ± 9.42 kPa. Cell‐culture studies confirm the biocompatibility.  相似文献   

11.
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.  相似文献   

12.
Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one‐step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC‐specific‐affinity peptide using 3D printing (3DP) technology. The combination ratio of silk fibroin and gelatin greatly balances the mechanical properties and degradation rate to match the newly formed cartilage. This dually optimized scaffold has shown superior performance for cartilage repair in a knee joint because it not only retains adequate BMSCs, due to efficient recruiting ability, and acts as a physical barrier for blood clots, but also provides a mechanical protection before neocartilage formation and a suitable 3D microenvironment for BMSC proliferation, differentiation, and extracellular matrix production. It appears to be a promising biomaterial for knee cartilage repair and is worthy of further investigation in large animal studies and preclinical applications. Beyond knee cartilage, this dually optimized scaffold may also serve as an ideal biomaterial for the regeneration of other joint cartilages.  相似文献   

13.
Treatment of large bone defects, particularly bone non-union, remains a clinical challenge. The gold-standard bone substitute continues to be an autologous bone graft, which is difficult to be replaced with synthetic biomaterials. Considering these aspects, strategies should be formulated to develop advanced materials for functional bone regeneration. Recent studies have revealed that hematoma (the first tissue structure formed at the bone injury site) plays an essential role in bone healing. Hematoma consists of a fibrin clot, infiltrated immune cells, and tissue progenitor cells. It bridges the bone defect and provides a microenvironment for the interplay between hemostasis and the immune systems. Moreover, an ideal fibrin structure with appropriate fiber thickness and density could facilitate bone regeneration, and biomaterial implantation could affect fibrin structure. Meanwhile, immunoregulation plays an essential role in bone healing. In particular, materials inducing a shift from inflammatory to anti-inflammatory phenotypes in immune cells show enhanced osteoinductivity. More importantly, the interaction between hemostasis and the immune system should play a vital part in bone regeneration by determining both fibrin structure and bone healing microenvironment. Coagulants-triggered inflammation could, in turn, facilitate coagulation cascades, which form positive feedback to amplify both processes. Meanwhile, anti-coagulants neutralize coagulation and inhibit inflammation and thereby control the coagulation and inflammation to prevent thrombosis. The balance between coagulation–inflammation and anti-coagulation–anti-inflammation plays a determinant role in the fibrin structure and fibrinolysis process. The inflammation could be “quenched” gradually during this process, whereby a highly effective microenvironment for bone regeneration can be generated. Presently, there are limited biomaterial studies targeting the bone-healing hematoma, particularly the hemostasis–immune interplay. Considering this, this review summarizes the current materials for hemostasis and immunomodulation, and the critical role of the hemostasis–immune interaction in bone regeneration. It also proposes potential strategies to develop materials with the capacity to generate a highly effective bone healing hematoma, by modulating the hemostasis–immune interplay to maintain the balance between coagulation–inflammation and anti-coagulation–anti-inflammation.  相似文献   

14.
A biphasic scaffold with a stratified structure for osteochondral tissue engineering was developed. The chondral phase was a collagen-chitosan composite. The osseous phase was a composite of bioactive glass and collagen. Collagen integrated in the two respective phases was connected by cross-linking agents. Both layers of the scaffold showed interconnected porous structures. After being immersed into stimulated body fluid, precipitation of spherulitic grains could be found on the surface of the osseous phase and this precipitation was proved to be hydroxyapatite by X-ray diffraction and Fourier transform infrared spectroscopy. Inversion, fluorescence and scanning electron microscopy further confirmed that bone marrow stromal cells could anchor on this scaffold with healthy spreading. As the consequence, this biphasic scaffold may have significant potential as an alternative for osteochondral tissue engineering.  相似文献   

15.
A novel approach was undertaken to create a potential skin wound dressing. L929 fibroblast cells and alginate solution were simultaneously dispensed into a calcium chloride solution using a three-dimensional plotting system to manufacture a fibrous alginate scaffold with interconnected pores. These cells were then embedded in the alginate hydrogel fibers of the scaffold. A conventional scaffold with cells directly seeded on the fiber surface was used as a control. The encapsulated fibroblasts made using the co-dispensing method distributed homogeneously within the scaffold and showed the delayed formation of large cell aggregates compared to the control. The cells embedded in the hydrogel fibers also deposited more type I collagen in the extracellular matrix and expressed higher levels of fgf11 and fn1 than the control, indicating increased cellular proliferation and attachment. The results indicate that the novel co-dispensing alginate scaffold may promote skin regeneration better than the conventional directly-seeded scaffold.  相似文献   

16.
Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calcium ions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite hydrogels display biocompatibility that is comparable to simple HA hydrogels, allowing for Schwann cell survival and growth. No significant difference was found between composite hydrogels made from different ratios of alginate and HA. A 3D BioPlotterTM rapid prototyping system was used to fabricate 3D scaffolds. The result indicated that combining HA with alginate facilitated the fabrication process and that 3D scaffolds with porous inner structure can be fabricated from the composite hydrogels, but not from HA alone. This information provides a basis for continuing in vitro and in vivo tests of the suitability of alginate/HA hydrogel as a biomaterial to create living cell scaffolds to support nerve regeneration.  相似文献   

17.
The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2C MXene wrapped with S‐nitrosothiol (R? SNO)‐grafted mesoporous silica with 3D‐printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)‐triggered photonic hyperthermia of MXene in the NIR‐II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone‐regeneration bioactivity, augmented by sufficient blood supply triggered by on‐demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.  相似文献   

18.
Background Reconstruction of large segment of bony defects is frequently needed in hand surgery. Autogenous bone grafting is considered the standard in management of these bony defects but has limited source of graft material. Collagen and hydroxyapatite have been used as bone-filling materials and are known to serve as the osteoconductive scaffold for bone regeneration. On the other hand, platelet-rich plasma is a kind of natural source of growth factors, and has been used successfully in bone regeneration and improving wound healing. This study was designed to evaluate the effectiveness of using biohybrids of platelet-rich plasma and collagen-hydroxyapatite beads for fabricating of protrusive bone in a rabbit animal model. Methods Biomaterial beads comprised of particulate hydroxyapatite dispersed in fibrous collagen (type I) matrices were prepared and filled in the ringed polytetrafluoroethylene (PTFE) artificial vascular graft (3 cm long, 1 cm in diameter). New Zealand White rabbits were each implanted with two cylindrical PTFE artificial vascular graft over both iliac crests (n = 16). A 2 × 0.5 cm opening was created at the side of each PTFE chamber to allow the content of chamber in contact with the bone marrow of the ileum. The chambers were empty (groups A and D), filled with type I collagen/hydroxyapatite beads (groups B and C). In groups C and D, autologous platelet rich plasma (PRP) was given by transcutaneous injection method into the chambers every week. After 12 weeks, the animals were sacrificed and the chambers were harvested for radiological and histological analysis. Results In plain radiographs, the group C chambers had significantly higher bone tissue engineered (average calcified density 0.95, average calcified area 61.83%) compared with other groups (P < 0.001). In histological examination, there was a creeping substitution of the implant by the in-growth of fibrovascular tissue in group C. Abundant fibrovascular networks positioned interstitially between these biomaterial beads in all parts of chamber. Degradation of these beads and newly formed capillaries and osteoids around the degraded matrixes are shown. The continually calcification in the matrixes or degraded matrixes is evidenced by the strong green fluorescence observed under the confocal microscope. In group B, looser architecture without evidence of tissue in-growth was shown. In the scaffold absent groups (A and D), there was only fibrous tissue shown within the chamber. Conclusions In this study, we have demonstrated a feasible approach to fabricate an osseous tissue that meets clinical need. Using the type I collagen/ hydroxyapatite gel beads matrixes and intermittent injection of autologous platelet-rich-plasma, specific 3D osseous tissues with fibrovascular network structure from pre-exist bony margin were successfully created in an in vivo animal model.  相似文献   

19.
Microfluidic scaffolds for tissue engineering   总被引:1,自引:0,他引:1  
Most methods to culture cells in three dimensions depend on a cell-seedable biomaterial to define the global structure of the culture and the microenvironment of the cells. Efforts to tailor these scaffolds have focused on the chemical and mechanical properties of the biomaterial itself. Here, we present a strategy to control the distributions of soluble chemicals within the scaffold with convective mass transfer via microfluidic networks embedded directly within the cell-seeded biomaterial. Our presentation of this strategy includes: a lithographic technique to build functional microfluidic structures within a calcium alginate hydrogel seeded with cells; characterization of this process with respect to microstructural fidelity and cell viability; characterization of convective and diffusive mass transfer of small and large solutes within this microfluidic scaffold; and demonstration of temporal and spatial control of the distribution of non-reactive solutes and reactive solutes (that is, metabolites) within the bulk of the scaffold. This approach to control the chemical environment on a micrometre scale within a macroscopic scaffold could aid in engineering complex tissues.  相似文献   

20.
Nowadays, the treatment of osteoarthritis (OA), a highly prevalent joint disorder, remains a medical challenge because of the lack of understanding of its pathogenesis. In this work, we developed an alternative strategy of OA treatment using magnesium-based materials as potential therapeutic agent towards subchondral bone remodeling. We selected deer antlers as the animal model where calcification behaviors could provide interesting references for the rapid and reproducible endochondral bone growth. Extremely high content of Mg was detected in the antler, which was able to affect the evolutions of biological apatite. Herein, octacalcium phosphate (OCP) and amorphous calcium phosphate (ACP), which are critically involved in the calcification process, were respectively synthesized under the Mg-containing conditions to understand the role of Mg in the evolution of biological apatite. Results showed that the substitution of Mg2+ at lower contents stabilized OCP and ACP, while higher contents of Mg inhibited the formation of both phases. The size of both calcium phosphates was also altered significantly by the addition of Mg. The results of cell culture indicated that excess Mg notably accelerated the secretion of extracellular matrix and inhibited the mineralization of chondrocyte matrix. Hence, utilization of Mg-based materials in subchondral bone was supposed to provide a potential therapeutic approach to treat the OA by inhibiting subchondral of ossification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号