首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 224 毫秒
1.
元素掺杂类金刚石碳膜降内应力研究综述   总被引:1,自引:1,他引:0  
我国汽车行业与国际同行的差距主要在于发动机关键零部件的摩擦磨损。类金刚石(DLC)碳膜技术是解决发动机关键零部件摩擦磨损问题的有效途径,但传统的DLC碳膜在制备过程中会产生较高的内应力(可达10GPa),从而导致薄膜失效。首先分析了DLC碳膜在汽车零部件领域的应用背景,探讨了薄膜内应力的来源,重点综述了异质元素掺杂降低类金刚石碳膜内应力的研究现状。常用掺杂元素按化学性质可分为碳化物形成元素与非碳化物形成元素,不同于其他分类方法,笔者按掺杂元素的组元多少进行划分,从单元掺杂、二元或多元掺杂入手,系统分析了各种掺杂方式、掺杂元素的优缺点。在此基础上,指出元素掺杂降低类金刚石碳膜内应力的研究从最初的单一元素掺杂,逐步发展到了二元或多元元素掺杂;从碳化物形成元素掺杂、非碳化物形成元素掺杂,逐步发展到碳化物形成元素与非碳化物形成元素的多元共掺杂;所研究的类金刚石碳膜的显微结构也从最初的非晶态结构向多元、多相结构发展,以期获得良好的综合机械性能。  相似文献   

2.
崔龙辰  余伟杰 《表面技术》2019,48(12):150-159
现代工业的迅猛发展迫使愈来愈多的机械零部件需要在高温下运转,因此高温润滑材料的匹配发展至关重要。在摩擦表面沉积固体润滑薄膜是降低高温下机械装备的摩擦与磨损,提高其使用寿命和可靠性的有效手段。近年来,类金刚石碳(Diamond-like carbon,DLC)薄膜的高温摩擦学得到了广泛研究,并取得了一些重要的进展。大量研究表明,通过适当的元素掺杂可以显著提高DLC薄膜的高温摩擦学性能。首先分别综述了纯碳DLC薄膜、含氢DLC薄膜、Si掺杂DLC薄膜、金属元素掺杂DLC薄膜、元素共掺杂DLC薄膜的高温摩擦学研究进展。通过总结文献中的数据,绘制了各种DLC薄膜的摩擦系数随温度的变化曲线,进而确定了各种薄膜的有效润滑温域。在此基础上,提出了几种有望实现宽温域连续润滑的DLC薄膜新体系,并分析了DLC薄膜的高温润滑失效机理,强调了分子/原子的热扩散和薄膜的热应力在DLC薄膜高温润滑失效中的作用。最后,从提高DLC薄膜自身的高温摩擦学性能和提高DLC薄膜与基材的高温结合性能两个方面,对今后亟待开展的研究工作进行了展望。  相似文献   

3.
评述了类金刚石基(DLC、a-C)、非晶氮化碳基(a-CNx)、过渡金属氮化物基(TiN、CrN)及其改性纳米复合薄膜的水润滑摩擦学性能,分析了微观结构、梯度结构、元素掺杂、对磨材料及摩擦参数对其水润滑摩擦磨损性能的影响,并揭示了水润滑中纳米复合薄膜存在的摩擦磨损机制,指出了三种纳米复合薄膜体系在水润滑中均可表现出优异的减摩抗磨特性,但与薄膜成分、层状结构、力学性能及对磨材料物理化学性能密切相关。一般而言,相比于过渡金属氮化物基薄膜,类金刚石基及非晶氮化碳基薄膜由于在水润滑中形成转移层和水合润滑层而呈现出更低的摩擦系数和磨损率。当选用的对磨材料易于发生摩擦水合反应时,形成的水合层起到的保护作用使得纳米复合薄膜均表现出了更低的磨损率。在保证薄膜未发生剥落而失效时,适当地加载载荷和滑移速度也是获得最优水润滑摩擦学性能的关键因素。为薄膜应用在水润滑器械作业提供了一定的参考,并展望了纳米复合薄膜水润滑摩擦学未来的研究方向。  相似文献   

4.
目的研究具有选择性键合作用的掺杂金属元素(Cu、Al、Ti)对类金刚石(DLC)薄膜的结构和摩擦学性能的影响。方法以高纯石墨及其与金属复合靶作为靶材,采用离子源镀膜技术分别在n-型(100)单晶硅片和抛光304不锈钢片基体上制备金属-DLC复合膜。采用514.6 nm氩离子激发源的Raman光谱仪,对金属-DLC复合薄膜进行拉曼光谱分析。采用努氏硬度计和表面轮廓仪测量计算薄膜的硬度和残余应力。采用原子力显微镜(AFM)观察DLC薄膜的表面形貌和结构。使用球-盘滑动磨损试验机对DLC复合薄膜进行摩擦学性能分析。结果类金刚石薄膜中掺入不同金属元素掺杂后,摩擦系数保持相对稳定,但磨损率存在较大差异。无掺杂DLC膜中的sp~3键含量最高,薄膜硬度高,残余应力大,在摩擦过程中易脱落。Ti-DLC金属复合膜的表面质量最好,结构致密,残余应力释放的同时保持较高的硬度,测得其磨损率最低,为0.13×10~(-15) m~3/nm。结论通过在DLC膜中掺杂不同键合能力的金属元素能够调控DLC薄膜的微观结构,改善薄膜的力学性能(硬度、残余应力),提高薄膜的抗磨损性能。薄膜的摩擦学性能与薄膜的微观结构与金属掺杂元素的存在形态有关。  相似文献   

5.
首先从碳基固体润滑薄膜的应用需求与成本效益出发,探讨了研究碳基固体润滑薄膜的迫切要求和重要意义,然后对类金刚石(DLC)薄膜、类富勒烯(FLC)薄膜及石墨烯薄膜三类最常用的碳基固体润滑薄膜的研究现状进行了较详细的介绍。其中,重点介绍了DLC薄膜的三种减摩抗磨机理,探讨了掺杂元素改性对DLC薄膜硬度、摩擦系数和磨损率等多个方面的影响,并指出外部因素(基体材料、过渡层和应用环境等)对DLC薄膜性能的重要作用。探讨了掺氢、掺氟和掺氮对FLC薄膜构性转变和摩擦学性能的影响。总体来说,氟掺杂导致FLC结构变化,并显著改变薄膜硬度;掺氮会诱导类富勒烯微结构的增加;掺氢FLC薄膜热处理后可达到超润滑状态。总结了石墨烯薄膜制备工艺的发展、石墨烯基复合薄膜的摩擦学性能和石墨烯薄膜在不同基体材料的应用。最后,指出了碳基润滑薄膜领域亟待解决的关键难题,并对未来的研究方向做出了预测。  相似文献   

6.
目的 探究三元乙丙橡胶(EPDM)表面粗糙度对DLC薄膜和Cr/DLC的微观结构、附着力、摩擦学性能的影响,并阐明Cr中间层对橡胶表面DLC薄膜的作用。方法 使用砂纸打磨EPDM橡胶得到不同的表面粗糙度。采用非平衡磁控溅射技术在不同粗糙度的橡胶基体表面沉积无中间层的类金刚石碳基薄膜(DLC)及有Cr中间层的类金刚石碳基薄膜(Cr/DLC)。使用二维轮廓仪获得基体及薄膜的表面粗糙度,通过扫描电子显微镜以及拉曼光谱对薄膜的表面形貌和结构成分进行分析,并采用X切割试验和摩擦磨损试验分别评估DLC薄膜的附着力和摩擦学性能。结果 基体表面粗糙度对薄膜的微观结构没有显著影响,但却对薄膜附着力以及摩擦学性能有较大的影响。薄膜附着力随着基体粗糙度的增加呈现先增大后减小的趋势,当基体表面粗糙度为1 100 nm时,DLC薄膜具有最强的附着力和最佳的摩擦学性能。此外,Cr中间层的引入对提高薄膜附着力和承载能力起到了积极的作用。结论 适当增加基体表面粗糙度可以增强DLC薄膜的附着力,改善薄膜的摩擦学性能。Cr中间层可以提高薄膜的承载能力,从而提高薄膜的耐磨性。  相似文献   

7.
采用离子束沉积技术在医用Ti6Al4V合金表面制备类金刚石薄膜(DLC),利用原子力显微镜、Raman光谱、X射线光电子能谱(XPS)及UMT-2摩擦磨损试验机对薄膜的形貌、结构、摩擦学性能进行表征。采用动电位极化对涂层前后基底的耐腐蚀性能进行测试。结果表明:制备薄膜为类金刚石碳结构,基底偏压对薄膜形貌、结构有较大影响;偏压为–100 V时制备的薄膜表面粗糙度低(6.5 nm),sp3/sp2 比值高,摩擦学性能优异;经DLC膜保护的合金基底耐腐蚀性能获得明显改善。  相似文献   

8.
采用离子束沉积技术在医用Ti6Al4V合金表面制备类金刚石薄膜(DLC),利用原子力显微镜、Raman光谱、X射线光电子能谱(XPS)及UMT-2摩擦磨损试验机对薄膜的形貌、结构、摩擦学性能进行表征。采用动电位极化对涂层前后基底的耐腐蚀性能进行测试。结果表明:制备薄膜为类金刚石碳结构,基底偏压对薄膜形貌、结构有较大影响;偏压为-100V时制备的薄膜表面粗糙度低(6.5nm),sp3/sp2比值高,摩擦学性能优异;经DLC膜保护的合金基底耐腐蚀性能获得明显改善。  相似文献   

9.
类金刚石碳膜的摩擦学性能及摩擦机制   总被引:3,自引:0,他引:3  
类金刚石碳膜作为低摩擦系数的固体润滑耐磨层越来越受到重视,但其摩擦学行为强烈地依赖于试验条件和膜的本质,而膜的本质又依赖于制备工艺。本文概述了不同工艺方法制备的类金刚石碳膜的摩擦学性能,介绍了气氛、湿度、载荷及滑动速度等试验条件对其摩擦学行为的影响,对提出的不同摩擦机理进行了总结和讨论。  相似文献   

10.
类金刚石薄膜的摩擦学特性研究进展   总被引:2,自引:2,他引:0  
谢红梅 《表面技术》2011,40(3):90-93,97
类金刚石薄膜(DLC)具有优良的摩擦磨损性能,但是DLC薄膜的摩擦学特性强烈依赖于制备技术、摩擦接触点的表面化学状态和物理状态,因此进一步提高类金刚石薄膜的摩擦学特性是目前的热门研究方向之一.在综合分析了近年来该领域研究的基础上,总结了影响DLC薄膜摩擦学性能的因素,并分析了各个因素的影响机理,以期找出一些规律为适应类...  相似文献   

11.
目的通过调节偏压,改善无氢DLC薄膜的微观结构,提高其力学性能和减摩抗磨性能。方法采用离子束辅助增强磁控溅射系统,沉积不同偏压工艺的DLC薄膜。采用原子力显微镜(AFM)观察薄膜表面形貌,采用拉曼光谱仪对薄膜的微观结构进行分析,采用纳米压痕仪测试薄膜硬度及弹性模量,采用表面轮廓仪测定薄膜沉积前/后基体曲率变化,并计算薄膜的残余应力,采用大载荷划痕仪分析薄膜与不锈钢基体的结合力,采用TRB球-盘摩擦磨损试验机评价薄膜的摩擦学性能,采用白光共聚焦显微镜测量薄膜磨痕轮廓,并计算薄膜的磨损率。结果偏压对DLC薄膜表面形貌、微观结构、力学性能、摩擦学性能都有不同程度的影响。偏压升高导致碳离子能量升高,表面粗糙度呈现先减小后增加的趋势,-400V的薄膜表面具有最小的表面粗糙度且C─C sp^3键含量最多,这也导致了此偏压下薄膜的硬度最大。薄膜的结合性能与碳离子能量大小呈正相关,-800 V时具有3.98 N的最优结合性能。不同偏压工艺制备的薄膜摩擦系数随湿度的增加,均呈现减小的趋势,偏压为-400V时,薄膜在不同湿度环境中均显示出最优的摩擦学性能。结论偏压为-400 V时,DLC薄膜综合性能最优,其表面粗糙度、硬度、结合力和摩擦系数分别为2.5 nm、17.1 GPa、2.81 N和0.11。  相似文献   

12.
类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。DLC基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。最后对DLC基纳米多层膜的未来发展进行了展望。  相似文献   

13.
高熵碳化物薄膜的脆性限制了其在高承载、长周期服役条件下的应用。精细设计的纳米复合结构可以在不损失薄膜强度前提下显著提高薄膜的韧性。采用高功率脉冲磁控溅射技术制备以非晶为基体连续相,以碳化物陶瓷相为分散相的非晶-晶体的高熵碳化物(CuNiTiNbCr)C_(x)薄膜,研究不同C_(2)H_(2)气体流量(F_(C))对薄膜成分、结构、力学性能和摩擦学性能的影响。采用能谱仪、扫描电子显微镜、X射线衍射仪、透射电子显微镜、X射线光电子能谱分析薄膜的成分、形貌、结构及各元素的化学状态,进一步采用纳米压痕以及球-盘式摩擦磨损试验机对薄膜的硬度、模量和摩擦磨损性能进行表征。结果表明,随着乙炔气体流量的增加,薄膜中碳含量逐渐增加,结构从非晶转变为非晶-晶体的纳米复合结构。纳米复合结构薄膜的硬度随着乙炔流量的增加逐渐增加,这是因为薄膜中生成大量碳化物陶瓷相,薄膜硬度最高为20 GPa。纳米复合薄膜呈现优异的摩擦学性能,在F_(C)=3 mL/min时,薄膜的摩擦性能达到最优,其磨损量为2.9×10^(-6)mm^(3)/Nm。综上,采用高功率脉冲磁控溅射技术可以精细调控薄膜结构,制备出强韧一体化、耐磨减摩的纳米复合结构(CuNiTiNbCr)C_(x)薄膜。  相似文献   

14.
目的 解决316L不锈钢在苛刻海洋环境中易磨损、易腐蚀的问题。方法 采用中频磁控溅射技术在316L不锈钢上沉积了Ta/TaN/TaCN/Ta-DLC薄膜。通过扫描电子显微镜、拉曼光谱、X射线光电子能谱、X射线衍射、纳米压痕、往复摩擦磨损试验和电化学测试等手段,重点研究了DLC膜层中Ta元素掺杂含量对薄膜结构、组成成分、力学性能、摩擦学性能和耐腐蚀性能的影响规律。结果 随着Ta元素含量(原子数分数)从2.04%增到4.16%,薄膜中的sp3键含量呈现先升高后降低的趋势,当Ta原子数分数为3.60%时,薄膜中sp3键含量最高,且薄膜的硬度及弹性模量达到最大,分别为7.01 GPa和157.87 GPa。随着Ta元素含量的增加,薄膜的平均摩擦因数逐渐减小,在4.16%(原子数分数)时达到最小0.21。Ta元素含量对薄膜的结合力影响较小,且所有薄膜结合力总体在10 N左右。当Ta原子数分数为3.60%时,薄膜的腐蚀电流密度及钝化电流密度最小,分别为0.006 μA/cm2和0.63 μA/cm2,比其他薄膜的低1~2个数量级,并且薄膜电阻及电荷转移电阻最大,展现出最为优异的耐腐蚀性能。结论 Ta元素的掺杂提高了薄膜的耐摩擦性能,且适当的Ta元素掺杂能够提高Ta/TaN/TaCN/Ta-DLC薄膜的耐磨耐蚀性能。  相似文献   

15.
The structural and tribological properties of diamond-like nanocomposite (DLN) thin films, deposited by radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) on the pyrex glass or silicon substrate using the combinations of siloxane and silazane based gas precursors, are discussed. High resolution transmission electron microscopy (HRTEM) result shows the DLN film structure with different nanoparticle size. The surface morphology of the DLN films has been investigated by using atomic force microscopy (AFM). The structural properties of the DLN films are analyzed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We have observed different bonds like C―C, C―H, C―Si, C―O, Si―O, Si―H, etc. in the DLN films by XPS and FTIR analysis, which reveal that it consists of a-C:H and a-Si:O networks. The disorder and graphitic structure of amorphous carbon of the deposited films are analyzed by Raman spectroscopy. The hardness and friction coefficient of the films are measured by nanoindentation and scratch test techniques. Finally, we find that mixed siloxane and silazane precursor (MSSP) based DLN films provide better film-properties like surface roughness, friction coefficient, etc. than those of single siloxane or silazane precursor (SSSP) based DLN films.  相似文献   

16.
Graphite-like amorphous carbon film was fabricated by unbalanced magnetron sputtering technique.Raman spectroscopy,atomic force microscopy(AFM)and tribometer were subsequently used to investigate the microstructure and tribological properties of the resultant film.It is found that the deposited carbon film is dominated by sp 2 sites,and the intensity ratio of the D and G peaks is as high as 4.0,which is one order of magnitude larger than that of diamond-like carbon films with high sp 3 content,indicating a more graphite-like structure.However,the as-deposited carbon film exhibits moderately high hardness(13.7 GPa),low internal stress(0.38 GPa)and superior tribological properties with high load bearing capacity(Hertz contact stress about 3.2 GPa)and low wear rate(2.73×10-10 cm3/N.m)in ambient atmosphere.Although it displays a poor wear resistance in water lubricated condition,a superior wear resistance is achieved in oil lubricated condition.Its inherent physical property,the formation of transfer layer and the friction induced chemical reactions may be commonly responsible for its tribological properties.  相似文献   

17.
类金刚石(Diamond like carbon,DLC)薄膜具有高硬度、低摩擦系数、低磨损率的特点,已广泛应用于各行各业,但也存在内应力大、热稳定性差以及摩擦学性能对环境敏感等问题,制约了DLC薄膜的应用.在DLC薄膜中,掺入异质元素能够改变薄膜成分、微观结构和sp3杂化键含量,可有效地减小薄膜内应力,提高结合力并改...  相似文献   

18.
为了研究Si掺杂对无氢非晶碳基薄膜摩擦磨损性能的影响,利用直流磁控溅射技术在单晶硅和304不锈钢基底上沉积不同Si含量的无氢非晶碳基薄膜。采用SEM、Raman光谱、纳米压痕仪等分析手段对薄膜的成分、结构和力学性能进行表征。利用球盘式往复摩擦试验机测试薄膜在无润滑条件下的滑动摩擦磨损性能。结果表明:Si掺杂能降低薄膜内应力和促进sp3杂化,高于10%的Si原子导致薄膜硬度增加。在不同湿度条件下,Si掺杂并未明显影响溅射无氢非晶碳基薄膜的摩擦因数;相反,含Si薄膜在不同测试条件下都具有较高的磨损速率。薄膜磨损速率随相对湿度增加而减小,随Si含量增加而增加;高Si含量薄膜在低湿度条件下具有明显不稳定的摩擦因数和显著增加的磨损速率。这意味着在设计和发展性能优异的无氢非晶碳基摩擦学涂层时,应充分考虑Si掺杂导致的性能损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号