首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

2.
The thermal degradation process of poly(vinyl chloride)/acrylonitrile–butadiene–styrene (PVC/ABS) blends was investigated by dynamic thermogravimetric analysis in the temperature range 50–650°C in air. The thermooxidative degradation of PVC/ABS blends of different composition takes place in three steps. In this multistep process of degradation the first step, dehydrochlorination, is the most rapid. The maximal rate of dehydrochlorination for the PVC blends containing up to 20% ABS-modifier is achieved at average conversions of 23.5–20.0%, i.e., at 13.5% for the 50/50 blend. The apparent activation energies (E = 103–116 kJ mol−1) and preexponential factors (Z = 2.11 × 109−3.45 × 1010min−1) for the first step of the degradation process were calculated after the Kissinger method. © 1996 John Wiley © Sons, Inc.  相似文献   

3.
The recycling of acrylonitrile–butadiene–styrene (ABS) and high‐impact polystyrene (HIPS) from postconsumer electronic equipment housing was investigated. A preliminary study of shot size and particle size effects on the mechanical properties of ABS/HIPS (50/50) blends obtained directly via injection molding was conducted. Injection‐molded specimens of ABS/HIPS blends, obtained at different compositions with or without previous extrusion, were subjected to mechanical, thermal, and morphological testing. Preliminary studies showed that a smaller particle size resulted in higher tensile and impact strength, regardless of the shot size used during injection molding. ABS/HIPS blends obtained using previous extrusion presented a slight increase in Young's modulus and a decrease in elongation at break and impact strength. The increase in glass‐transition temperature related to the Polybutadiene (PB) phases of these blends indicated a possible increase in crosslinking structures during extrusion. In addition, these blends showed a coarse and heterogeneous morphology, suggesting that ABS did not completely mix with HIPS. Compared to processing conditions, the blend composition appeared to have a much stronger effect on the mechanical properties. The results obtained suggest the possibility of obtaining ABS/HIPS blends directly via injection molding as long as small ground particles are used. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43831.  相似文献   

4.
In this study, the influence of chlorinated polyethylene (CPE) and acrylonitrile–butadiene–styrene copolymer (ABS) on the mechanical properties of poly(vinyl chloride) (PVC)/CPE and PVC/ABS hybrids were examined. The experimental results show that the toughness of the hybrids could be modified greatly by the introduction of CPE or ABS. The microstructure and impact surfaces of the blends were investigated by scanning electron microscopy and transmission electron microscopy. ABS dispersed in the form of particles or agglomerates in the PVC matrix, and CPE tended to disperse as a net structure. In the tensile test, ABS initiated crazes as stress concentrators to toughen the PVC matrix, whereas CPE, with the PVC matrix together, caused a yield deformation by shear stress to form a shear band. The formation of crazes and shear bands benefited the toughening of PVC, but to the different extent. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 916–924, 2003  相似文献   

5.
A series of poly(acrylonitrile‐butadiene‐styrene) (ABS) grafting modifiers were synthesized by emulsion grafting poly(acrylonitrile‐styrene) (SAN) copolymer onto polybutadiene (PB) latex rubber particles. The chain transfer reagent tert‐dodecyl mercaptan (TDDM) was used to regulate the grafting degree of ABS and the molecular weight of SAN copolymers. By blending these ABS modifiers with Chlorinated polyvinyl chloride (CPVC) resin, a series of CPVC/ABS blends were obtained. The morphology, compatibility, and the mechanical properties of CPVC/ABS blends were investigated. The scanning electron microscope (SEM) studies showed that the ABS domain all uniformly dispersed in CPVC matrix. Dynamic mechanical analyses (DMA) results showed that the compatibility between CPVC and SAN became enhanced with the TDDM content. From the mechanical properties study of the CPVC/ABS blends, it was revealed that the impact strength first increases and then decreases with the TDDM content, which means that the compatibility between CPVC and the SAN was not the only requirement for maximizing toughness. The decreasing of tensile strength and the elongations might attribute to the lower entanglement between chains of CPVC and SAN. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Binary blends of poly(vinyl chloride) (PVC) with α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) were prepared via melt blending. A single glass transition temperature (Tg) was observed by differential scanning calorimetry, thus indicating that PVC is miscible with the α‐methylstyrene‐acrylonitrile‐styrene in AMS‐ABS. The results from attenuated total reflection Fourier transform infrared spectra indicated that specific strong interactions were not available in the blends. With increasing amounts of AMS‐ABS, both heat distortion temperature and thermal stability were increased considerably. With regard to mechanical properties, flexural and tensile properties decreased with increasing AMS‐ABS content. A synergism was observed in impact strength. The morphology of both impact‐fractured and tensile‐fractured surfaces, observed by scanning electron microscopy, correlated well with the mechanical properties. It is suggested that there was a transition of fracture mechanisms with the changing composition of the binary blends—from shear yielding for blends rich in PVC to cavitation for blends rich in AMS‐ABS. J. VINYL ADDIT. TECHNOL., 19:1–10, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
Thermal aging of immiscible bisphenol-A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) blends containing 25, 60, and 75% PC and the PC and ABS blend components have been studied. Changes in Izod impact properties and dynamic mechanical spectra are reported following aging at 90, 110, and 130°C for times up to 1500 h. PC/ABS blends containing 60 and 75% PC were found to retain high impact performance following aging at elevated temperatures, compared to the PC blend component. Dynamic mechanical spectroscopy is an effective probe for investigating the structure–property changes occurring and the mechanisms of aging. For PC and ABS, the changes were mainly due to physical aging of the amorphous polymers when aged below the glass-transition temperature. For the PC/ABS blends, oxidative degradation additionally contributes to loss of toughness. Although structure–property changes are related to the behavior of the blend components, additional factors of potential importance for multiphase polymer–polymer systems have been identified, including a redistribution of stabilizers during the blend manufacture. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The thermal degradation of poly(vinyl chloride)/acrylonitrile–butadiene–styrene (PVC/ABS) blends of different compositions was investigated by means of isothermal thermogravimetric analysis at temperatures of 210°–240°C in flowing atmosphere of air. The Flynn equation, the method of stationary point, and kinetic equation using the Prout–Tompkins model proved to be satisfactory in describing the thermooxidative degradation in the range of 5–30% conversions. The apparent activation energy E and preexponential factor Z were calculated for all compositions of PVC/ABS blends. The ratios E/ln Z are constant for pure and modified PVC and point to the unique mechanism of degradation process. Upon increasing the ratio of ABS in the PVC/ABS blend up to 50%, only the rate of the process is changed; the mechanism remains unchanged. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 833–839, 1999  相似文献   

9.
The aim of this work within the framework of mechanical recycling of polymers is upgrading recycled engineering plastics by means of a blending technique. Four different plastics from dismantled Volvo cars have been investigated. They are poly(acrylonitrile‐butadiene‐styrene) (ABS) and ABS‐polycarbonate (ABS/PC) as major components and poly(methyl methacrylate) (PMMA) and polyamide (PA) as minor components. Blending recycled ABS and PC/ABS (70/30) with a small amount of methyl methacrylate‐butadiene‐styrene core‐shell impact modifiers gives the mixture better impact properties than any of its individual components. Some 10% of PMMA from tail light housings can follow the PC/ABS blends made. The property profile will rather be improved. However, PA is an incompatible component that should be sorted out from the mixture. Antioxidants and metal deactivators do not help the recyclates show better mechanical properties. Two toughness measurements, Charpy impact strength and J‐integral method, show complimentary results for such blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 510–515, 1999  相似文献   

10.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

11.
The mechanical and heat‐resistant properties of acrylonitrile–butadiene–styrene (ABS) binary and ternary blends were investigated. The relationship of compatibility and properties was discussed. The results show that poly(methyl methacrylate) (PMMA) and styrene–maleic anhydride (SMA) can improve the thermal properties of conventional ABS. The Izod impact property of ABS/PMMA blends increases significantly with the addition of PMMA, whereas that of ABS/SMA blends decreases significantly with the addition of SMA. Blends mixed with high‐viscosity PMMA are characterized by higher heat‐distortion temperature (HDT), and their heat resistance is similar to that of blends mixed with SMA. For high‐viscosity PMMA, from 10 to 20%, it is clear that blends appear at the brittle–ductile transition, which is related to the compatibility of the two phases. TEM micrographs show low‐content and high‐viscosity PMMA in large, abnormally shaped forms in the matrix. Compatibility between PMMA and ABS is dependent on both the amount and the viscosity of PMMA. When the amount of high‐viscosity PMMA varied from 10 to 20 wt %, the morphology of the ABS binary blends varied from poor to satisfactory compatibility. As the viscosity of PMMA decreases, the critical amount of PMMA needed for the compatibility of the two phases also decreases. SMA, as a compatibilizer, improved the interfacial adhesiveness of ABS and PMMA, which results in PMMA having good dispersion in the matrix. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2652–2660, 2002  相似文献   

12.
Blends of poly(vinyl chloride) (PVC) with different copolymers have been studied to obtain a plasticized PVC with improved properties and the absence of plasticizer migration. The copolymers used as plasticizers in the blends were acrylonitrile butadiene rubber, ethylene vinyl acetate (EVA), and ethylene-acrylic copolymer (E-Acry). Blends were studied with regard to their processing, miscibility, and mechanical properties, as a function of blend and copolymer composition. The results obtained were compared with those of equivalent compositions in the PVC/dioctyl phthalate (DOP) system. Better results than PVC/DOP were obtained for PVC/acrylonitrile butadiene rubber blends. The plasticizing effect on PVC of EVA and E-Acry copolymers was similar to that of DOP. It is shown that crosslinking PVC/E-Acry blends or increasing the vinyl acetate content in PVC/EVA blends, are alternatives that can increase the compatibility and mechanical properties of these blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1303–1312, 2000  相似文献   

13.
Blends of acrylonitrile–butadiene–styrene (ABS) with 5, 10, 15, and 20 wt % of poly(vinyl alcohol) (PV) were prepared by extruding in a corotating twin screw extruder. The ABS material was blended with PVA with the objective to enhance the degradability of ABS. The extrudate strands were cut into pellets and injection molded to make test specimens. These ABS/PVA blend specimens were tested for physicomechanical properties like tensile strength, elongation, modulus of elasticity, abrasion resistance, density, and water absorption, These blends were further characterized by melt flow Index, differential scanning calorimetry, thermogravimetry analysis, and scanning electron microscopy. The morphological analysis reveals the existence of PVA domains in the ABS matrix. Differential scanning calorimetry thermograms indicates the chemical interaction between ABS and PVA domains. The prepared blends show enhanced environmental and thermal degradation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
The styrene–EPDM–vinylacetate (SEV) graft polymer, which linked respectively the styrene (St) unit and vinylacetate the (VAc) unit to the ethylene–propylene–diene terpolymer (EPDM) backbone was synthesized by two‐step graft polymerizations: First the graft polymerization of VAc onto EPDM was carried out, and then St was added successively in the prepolymerized solution and further polymerized for a given period to obtain SEV. The effects of concentration of EPDM and an initiator, mole ratio of VAc to St, polymerization time, temperature, and solvent were examined on the graft polymerizations. The synthesized graft polymers (SEVs) that have different contents of St or VAc were identified by Fourier transform IR spectrum. The highest graft ratio has been obtained by 10 wt % of EPDM, 1.0 mole ratio of VAc to St, and 1.0 wt % of BPO in toluene for 48 h at 70°C. The glass transition temperature of SEV is lower than that of poly(vinyl acetate) (PVAc) and polystyrene (PS). The thermal stability of SEV is higher than that of PVAc, PS, and the acrylonitrile–butadiene–styrene (ABS) resin. The tensile strength of SEV was improved as compared with that of EPDM. The light resistance and weatherability of SEV were better than those of ABS. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2296–2304, 2000  相似文献   

15.
The impact behaviors of nanoclay filled nylon 6 (nano‐nylon 6) or nylon 6 blended with poly(acrylonitrile‐butadiene‐styrene) terpolymers (ABS) were investigated here using polybutadiene grafted maleic anhydride (PB‐g‐MA) as a compatibilizer to enhance interphase interaction. It is found that impact strength increases slightly for nano‐nylon 6/ABS blend system with the addition of compatibilizer at various ABS compositions, but increases to a certain degree for nylon 6/ABS case. Similar effects are also found with decreasing test temperature, especially at a blend composition of 80/20. These discrepancies are attributed to a different degree of available reaction sites from amine group on nano‐nylon 6 and nylon 6 as well as the rigidity of clay in deteriorating toughness. As for thermal properties, the heat distortion temperature shows marginally decrease in the nano‐nylon 6/ABS blend. Through morphology observations, the etched ABS particle sizes tend to decrease with the additions of compatibilizer for both blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. POLYM. ENG. SCI., 45:1461–1470, 2005. © 2005 Society of Plastics Engineers  相似文献   

16.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

17.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

18.
In a systematic manner, the roles of MWNTs as filler and styrene acrylonitrile copolymer‐graft‐maleic anhydride (SAN‐MA) as compatibilizer, individually and together, on dynamic‐mechanical behavior of polycarbonate (PC)‐rich/acrylonitrile butadiene styrene terpolymer (ABS) blend were studied. The investigations were performed using small‐scale mixing in a one‐step procedure with a fixed MWNTs content of 0.75 wt% and a blend composition of PC/ABS = 70/30 w/w. PC/SAN blends and nanocomposites as simpler model system for PC/ABS were also studied to reveal the role of the rubbery polybutadiene (PB) fraction. It is found that the tendency of MWNTs to localize within the PC component in compatibilized PC/ABS was lower than in compatibilized PC/SAN blends. Dynamic mechanical analysis (DMA) revealed the dual role of SAN‐MA as blend compatibilizer and also promoter of MWNTs migration towards PC, where SAN‐MA to MWNTs weight ratio varied between 1 and 4. At the compatibilizer/MWNTs weight ratio of 1, MWNTs localized in PC component of the blends whereas increasing the compatibilizer/MWNTs ratio to 4 led to migration of MWNTs toward SAN or ABS component. In DMA studies, loss modulus normalization of the nanocomposites revealed the coexistence of mobilized and immobilized regions within the nanocomposite structure, as a result of MWNTs and compatibilizer loading. POLYM. ENG. SCI., 54:2696–2706, 2014. © 2014 Society of Plastics Engineers  相似文献   

19.
Poly(acrylonitrile/butadiene/styrene) (ABS) is a two-phase material consisting of elastomer particles in a glassy polymer matric of styrene and acrylonitrile (SAN) [1]. The photooxidation of ABS was the subject of several studies [2, 3]. It was suggested that several processes will take place during photooxidation. These changes include the formation of hydroperoxide [4], chain breakage of the polystyrene, and the oxidation of the polymer as it was monitored by IR spectroscopy [4–6]. Also photooxidation affect the polybutadiene in ABS and oxidizes it, which results in the formation of hydroperoxide. There are no data available on the thermal degradation of ABS. In a previous study the thermal aging of recycled high-impact polystyrene was studied using UV-vis spectroscopy [7]. It was found that this method provided very useful information about the degradation of several industrial polymers [8–12]. In this paper thermal degradation of ABS is investigated by UV-vis and IR spectroscopy.  相似文献   

20.
The styrenic polymers poly(α‐methylstyrene‐acrylonitrile) (α‐MSAN) and poly(acrylonitrile‐butadiene‐styrene) (ABS) and (three types) were used to improve the heat resistance of poly(vinyl chloride) (PVC). The glass transition temperature (Tg) and miscibility were analyzed by dynamic mechanical thermal analysis (DMTA). Effects of composition on heat distortion temperature (HDT) were investigated with the different styrenic polymers. Other physical properties such as mechanical properties and melt flow rate (MFR) were also determined. Morphology was observed by scanning electron microscopy (SEM) in order to support the mechanical property results. The PVC was miscible with α‐MSAN but partially miscible with the ABS series, and α‐MSAN was much more effective in enhancing the Tg and HDT of rigid PVC than the ABS series as for mechanical properties, the addition of α‐MSAN could improve the tensile strength, bending strength, and bending modulus but decrease the impact strength of the materials compared with the addition of the ABS series. Improvement in processability was observed in the MFR results with the addition of the styrenic polymers. On the basis of all the properties, the formulation with an α‐MSAN content of 30 phr (parts per hundred parts of resin) was superior for heat‐resistant PVC profile. The HDT of PVC could be increased from 76.9°C to 85.4°C (measured under the maximum bending stress of 0.45 MPa) and combined with good mechanical properties and processability by the addition of 30 phr of α‐MSAN. Also, a heat‐resistant PVC profile was successfully fabricated. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号