共查询到20条相似文献,搜索用时 0 毫秒
1.
在对集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)进行研究之后,提出了一种利用改进的EEMD进行滚动轴承故障特征提取的方法。该方法根据EEMD的分解过程中信号和加入的白噪声的特点来选择EEMD的参数,并且对分解后所得到的的固有模态函数(IMF)分量进行阈值处理后再重构,以降低噪声的干扰。对重构后的信号进行包络谱分析,提取其故障特征,最后将该方法与通用的EEMD方法进行对比,研究结果表明EEMD是一种很有效的滚动轴承故障特征提取方法。 相似文献
2.
针对研究振动信号分析识别轴承状态的方法,在实践应用中受到各种噪声的影响很难达到准确识别预期目标的效果,提出了基于VMD能量熵特征与PNN神经网络结合的分类滚动轴承故障状态的方法。首先,通过运用变分模态分解(VMD)的信号预处理方法,实现振动信号的VMD降噪,同时利用集合经验模态分解(EEMD)对仿真信号进行对比两种方法的分解效果;然后,通过VMD能量熵和时域特征组成特征向量。最后,特征向量导入概率神经网络模型中准确识别滚动轴承故障状态。结果表明,该方法能将非平稳振动信号分解有效降噪且抑制模态混叠现象,同时能有效识别故障状态,对于在线监测机床健康状态领域的发展有重大的意义。 相似文献
3.
分析了滚动轴承故障振动信号的非线性、非平稳性特征,基于经验模态分解法(EMD)在处理此类信号中的优势,研究了滚动轴承故障信号的时频分析处理方法。通过EMD法将滚动轴承故障原始振动信号分解为多个平稳的IMF分量之和;选取前8个IMF能量值作为频域特征并结合时域特征构成故障振动信号特征集合,作为BP神经网络的输入;建立了滚动轴承故障诊断的BP神经网络模型,利用BP网络的自学习机制进行网络训练,得到了输入特征与故障模式之间的映射关系;通过对滚动轴承不同类别的故障诊断试验,验证了该方法的可行性。 相似文献
4.
针对铣削过程中声发射信号非平稳的特点,提出了一种基于噪声辅助经验模态分解(EEMD)和本征模函数(IMF)能量分布的刀具破损识别方法.首先对经过滤波后的原信号进行EEMD分解,抽取本征模函数组(IMF),后计算每一阶模函数能量及总体能量分布,最后提取特征向量,通过特征向量的变化识别刀具破损.利用该方法,在立式铣削加工中心上对稳定切削中刀具破损和变参数铣削加工进行了系统的分析,结果表明此方法能够剔除切削参数变化的影响,准确的识别刀具破损,具有很高的稳定性和准确性. 相似文献
5.
6.
7.
为了在非线性、非平稳的滚动轴承故障振动信号中有效提取出敏感的故障特征,提出了基于变分模态分解(VMD)与时间序列分析相结合的特征提取方法。首先通过VMD将原始信号分解为不同预设尺度的本征模态分量(IMF),对各个IMF分量建立时间序列预测模型,通过叠加重构得到最终的预测模型,比较评价指标确定最优参数的选取。最后,通过仿真信号与滚动轴承实际故障数据分析,并与经验模式分解(EMD)进行对比,结果表明该方法能够有效的提取到故障特征频率。 相似文献
8.
针对传统的轴承故障诊断过于依赖专家经验和故障特征提取困难的现状,同时为了适应故障诊断的大数据处理及实时监测的需求,提出了一种基于变分模态分解(variational mode decomposi-tion,VMD)与发育神经网络(developmental neural network,DNN)相结合的故障诊断方法.先... 相似文献
9.
针对采集到的滚动轴承早期故障振动信号因故障特征微弱而导致难以检测的问题,提出一种基于改进的变分模态分解(VMD)和经验小波变换(EWT)联合降噪的滚动轴承早期故障检测方法。首先,利用改进包络谱有效边界划分方法(IEPEFP)确定VMD和EWT的分解分量个数,利用改进分解模态数目选择方法(IDMNS)对VMD的主要分量进行叠加从而完成初次降噪;其次,对初次降噪后的信号进行EWT分解,利用IDMNS对主要分量进行叠加进而完成二次降噪;最后,对降噪后的信号进行包络谱分析,从而实现滚动轴承早期故障检测。通过轴承加速寿命试验数据集进行试验验证,结果表明提出方法可有效提取滚动轴承早期微弱故障特征,准确检测轴承早期故障,具有一定的工程参考价值。 相似文献
10.
针对基于浅层学习的轴承寿命预测模型非线性学习能力差、预测精度低的问题,提出一种基于堆叠门控循环神经网络(SGRU)的伺服电机滚动轴承剩余寿命预测方法。首先对轴承振动信号进行时域和时频域特征提取,将常用的时域特征参数和经过集合经验模态分解得到的时频域特征参数作为原始特征集,然后采用相似度度量方法选取最能反映轴承退化性能的特征。之后通过堆叠两层GRU隐层来构建一种深层的寿命预测网络,并以训练集的退化特征参数为输入对网络进行训练,不断优化网络参数。最后在FEMTO数据集上与单层长短期记忆网络(LSTM)方法进行对比。结果表明,该方法相比于单层LSTM方法具有更高的预测精度。 相似文献
11.
滚动轴承在发生损伤时,产生周期性脉冲振动,提取冲击振动的周期特征是故障诊断的关键。为了提取滚动轴承的故障特征频率,根据滚动轴承的振动响应信号特征,提出基于经验模态分解(EMD)和对数能量的故障特征频率提取方法。首先通过经验模态分解找到包含故障信息的本征模态函数(IMF),然后对IMF的短时能量进行积分并取自然对数,获得信号的对数能量变化曲线,最后通过对曲线的谱分析,找到轴承的故障特征频率。仿真和实验数据验证了该方法的有效性,并和Hilbert包络法与能量算子法进行了对比,表明该方法能更显著地突出故障特征频率。 相似文献
12.
13.
为了解决轴承故障特征提取中经验模态分解(EMD)出现的模态混叠现象,提出一种集合经验模态分解(EEMD)、快速谱峭度选频和共振解调技术相结合的滚动轴承故障诊断方法。对原始振动信号进行EEMD处理,分解为多个本征模态函数(IMF);将符合峭度准则的IMF分量筛选出来,对其进行信号重构,对重构信号进行快速谱峭度计算得出快速谱峭度图,从图中选出最优频带中心和带宽,确定FIR带通滤波器设计参数;最后通过共振解调技术对滤波信号进行包络分析,得出包络谱确定滚动轴承故障特征信息。通过滚动轴承实验分析,验证了此方法的可行性。 相似文献
14.
针对轴承早期故障信号微弱、故障特征难以提取的问题,提出一种将完备集合经验模态分解(CEEMDAN)与快速独立分量分析(FastICA)相结合的故障特征提取方法.该方法首先利用CEEMDAN将轴承故障信号进行分解,得到一系列模态分量(IMF);然后依据峭度准则选取相应分量进行重构,引入虚拟噪声通道;最后利用FastICA... 相似文献
15.
针对传统特征提取的故障诊断技术不能充分表征振动信号故障特征导致故障识别精度不高的问题,提出一种优化VMD和MHA-DenseNet的滚动轴承故障诊断方法。首先,采用麻雀搜索算法(SSA)对变分模态分解算法(VMD)的相关参数组合进行寻优;其次,采用优化VMD分解滚动轴承故障信号,获得的本征模态函数分量(IMF)作为神经网络输入数据;最后,构建多头注意密集神经网络(MHA-DenseNet)故障诊断模型来有效学习故障数据中的特征信息并完成滚动轴承的准确诊断。实验结果表明,提出的故障诊断方法识别率高达99.03%,相较于对比实验该方法提高了故障诊断的准确率。 相似文献
16.
17.
滚动轴承早期故障信号易受噪声干扰,故障冲击成分难以提取,故障识别困难。为从多角度提取故障轴承振动信号特征参数,利用变分模态分解(VMD)将振动信号分解为若干本征模态分量(IMFs),基于包络熵、相关系数、峭度筛选IMF分量。提取所选IMF的时域和频域特征、信号VMD能量熵及各IMF能量比组成特征向量,从时域、频域和能量角度反映故障信息。使用麻雀搜索算法(SSA)优化SVM参数,确定最优参数,克服参数选择难题。将样本特征向量输入SSA-SVM中进行故障分类,轴承故障实验数据表明:该方法故障识别平均准确率在98.71%以上;与单一域特征相比,该方法对故障类型和损伤程度识别效果更佳。 相似文献
18.
针对滚动轴承的内圈和外圈故障诊断问题,提出了一种基于辛几何模态分解(SGMD)、敏感参数和核模糊C均值聚类(KFCMC)相结合的方法。基于SGMD研究了实际测量的液压泵多模态故障振动信号;基于所提出的相似性分析法,将含有丰富运行特征信息的模态分量进行重构,并将其作为数据源;基于数据源提取时域和频域参数,并利用流行学习法筛选出峭度、裕度指标和峰值指标等敏感参数作为特征向量;利用KFCMC实现对内圈和外圈不同故障的诊断。通过对滚动轴承内、外圈故障振动信号的仿真和实测,验证了该方法可以有效地诊断滚动轴承不同故障。 相似文献
19.
针对在实际工业生产中,滚动轴承由于数据量少导致剩余寿命预测的准确度不高的问题,提出了一种时序注意力(temporal attention, TA)优化的时间卷积神经网络(time convolutional networks, TCN)与迁移学习相结合的剩余寿命预测方法。首先,通过互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)将原始特征向量分解为一组子序列分量,突出特征信号、降低噪声干扰;然后,将子序列分量输入搭建好的TCN模型并添加TA进行优化,深度挖掘深度特征与退化曲线关系;最后,引入迁移学习,利用源域数据进行训练和少量目标域数据进行参数微调,得到目标网络模型。经实例验证,所提模型的稳定性、预测精度相对于其它对比模型有所提升,且在异工况条件下依然有着良好的预测能力。 相似文献
20.
针对滚动轴承振动信号复杂且难以从中提取有效故障特征的问题,提出了一种总体经验模态分解(EEMD)、奇异值分解(SVD)和局部保持投影(LPP)相结合的故障特征提取方法。首先,对振动信号进行EEMD分解,利用EEMD分解后的固有模态分量(IMF)分别构造时域、频域和时频域空间状态矩阵;其次,利用SVD提炼时域、频域和时频域空间状态矩阵中的故障信息,筛选其中累加百分比大于90%的奇异值组成多域有效奇异值数组,构造多域奇异值特征矩阵;然后,利用LPP约简多域奇异值特征矩阵,提取低维、高区分度的故障特征;最后,利用支持向量机(SVM)对提出的故障特征提取方法进行评估。实验结果证明了该方法提取的故障特征可有效反映滚动轴承的故障状态。 相似文献