共查询到20条相似文献,搜索用时 15 毫秒
1.
Among many remediation techniques for metal ion removal, polymeric adsorbents are efficient and widely applied. This has made them comparable with other remediation techniques in terms of technical and economic efficiency, feasibility as well as green technology. This study was dedicated to the development of an insoluble modified chelating polymer for use as an adsorbent for abstraction of uranium from wastewaters. Cross-linked polyethylenimine (CPEI) was phosphonated by phosphorous acid for selective removal of uranium ions. The binding affinity of the phosphonated cross-linked polyethylenimine (PCPEI) to uranium ions was assessed as well as its ability to be regenerated for reuse. It exhibited high removal percentage for uranium ions up to 99% with high selectivity even in the presence of competing ions (Mn, Ni, As). The Freundlich isotherm was found to be the best fit describing the adsorption process of uranyl ions onto the PCPEI. The pseudo-second-order equation was found to better explain the adsorption kinetics, implying chemisorption. The thermodynamic study of the adsorption revealed high activation energies which confirmed the chemisorption as the mechanism of adsorption. 相似文献
2.
N-carboxymethyl chitosan (NCMC) was synthesized by reacting chitosan with chloroacetic acid in water under triethylamine (Et(3)N) as catalyst. The chemical structures of NCMC were characterized by Fourier transform infrared (FT-IR) and hydrogen-1 nuclear magnetic resonance ((1)H-NMR) spectroscopy and confirmed that carboxymethylation occurred on the amino groups. Samples of NCMC were used for removal of Cu(II) from aqueous solution. The effects of degree of substitution of NCMC, initial pH value and adsorption kinetics on the adsorption were studied. Adsorption experiments showed that NCMC has a high adsorption speed and high adsorption capacity for remove Cu(II) from aqueous solution. The adsorption kinetics data were best fitted with the pseudo-second-order model. The experimental equilibrium data of Cu(II) on the NCMC were both fitted to the Langmuir model and Freundlich model, which revealed that the maximum capacity for monolayer saturation was 147.93 mg/g. 相似文献
3.
In wastewater treatment, the removal of heavy metals is difficult due to the limited affinity of heavy metal ions to ion exchange resins. Here imprinting polymerization is used to develop resins with high capacity and selectivity for heavy metal ions for water treatment. A random copolymer of methacrylate and methacrylamide was found to be most effective for the removal of hydrophilic metal complexes, like CdCl2, ZnCI2, and the metalloid NaH2AsO4, particularly when the porosity of these resins is increased. For hydrophobic complexes imprinting emulsion polymerization was developed and data for the effective removal of mercury dithizonate will be described. Complete removal for up to 80 ppm of cadmium and mercury with only 200 mg of imprinted resin was obtained; competition and co-imprinting experiments are described as well. 相似文献
4.
Tsekova K Ganeva S Hristov A Todorova D Beschkov V 《Water science and technology》2011,63(10):2388-2394
A strategy for removal of heavy metals and phenol from wastewaters is proposed. It involves consecutive cation biosorption by fungi, phenol biodegradation by the yeast association Candida sp. 2326 + Candida sp. 2327 and regeneration. Copper and cobalt removal from aqueous solutions containing 80-120 mg/L phenol by biosorption, using Rhizopus archizus cells immobilized onto poly (vinyl alcohol), was investigated by conducting a series of batch experiments. The removal efficiencies were 81% for Cu and 5% for Co. The residual concentrations of Cu (1.9 mg/L) and of Co (9.5 mg/L) did not change the biodegradation dynamics of phenol. A quantitative biodegradation of 120 mg/L phenol proceeded within 22 h. After biodegradation of phenol, the removal efficiencies achieved by biosorption after regeneration were 90% for Cu and 44% for Co. It was found that copper and cobalt form positively charged complexes with phenol. This complex formation hinders the retention of Cu and Co by the biosorbent and reduces the uptake of their cations. 相似文献
5.
In this study an agricultural residue, sesame stalk, was evaluated for the removal of Ni(II) and Zn(II) metal ions from aqueous solutions. Biosorption studies were carried out at different pH, biosorbent dosage, initial metal ion concentrations, contact time, and solution temperature to determine the optimum conditions. The experimental data were modeled by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Langmuir model resulted in the best fit of the biosorption data. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and to evaluate rate constants. The best correlation was provided by the second-order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The experimental results showed that sesame stalk can be used as an effective and low-cost biosorbent precursor for the removal of heavy metal ions from aqueous solutions. 相似文献
6.
D Tiwari M R Yu M N Kim S M Lee O H Kwon K M Choi G J Lim J K Yang 《Water science and technology》2007,56(7):153-160
The aim of this study was to explore the applicability of manganese coated sand (MCS) in the presence and absence of sodium hypochlorite for the removal of Mn(II) (2 mg/L) from aqueous solutions. Sand itself is widely used as a filter media for the treatment of wastewaters and it was reported that during the treatment, Mn(II), which is present in the wastewater, is to be deposited on the surface of sand in the form of manganese dioxide. The present investigation dealt with various MCS samples, prepared in the laboratory by various doses of Mn(II) (i.e. from 0.05 to 0.2 mol/L) and the samples were obtained from the pilot plant and naturally coated in the water treatment plant for the removal of Mn(II) in the batch and column studies. Moreover, it was realised that the role of hypochlorite is multifunctional as it not only enhances the uptake of Mn(II) on the surface of MCS through oxidation of Mn(II) into Mn(IV) and hence the formation of manganese dioxide, but it was also supposed to disinfect the bacteria or harmful pathogens from the waste/surface waters. The results obtained clearly inferred that various MCS samples used for the removal of Mn(II) from aqueous solutions showed comparable removal efficiency. However, the presence of sodium hypochlorite greatly enhanced the removal of Mn(II) as more than 80% Mn(II) was removed in the presence of sodium hypochlorite at around pH 6.5. Similarly, while comparing the column data it was again noted that the breakthrough points occurred after the 4,100 and 6,500 bed volumes, respectively, in the absence and in the presence of sodium hypochlorite (2 mg/L). 相似文献
7.
The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria 总被引:1,自引:0,他引:1
The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent. 相似文献
8.
Sorption of benzoic acid from aqueous solution by cetyltrimethylammonium bromide modified birnessite
Layered manganese oxide (birnessite) has been studied for its use as catalytic materials. The research presented in this study investigates the sorption of benzoic acid from water on synthesized cetyltrimethylammonium bromide modified birnessite (CTAB-birnessite). The synthesized CTAB-birnessite was characterized by X-ray powder diffraction (XRD). The experimental results of sorption kinetic were well fitted to the pseudo-second-order equation. The sorption isotherms were linear at different pH values, and it indicates a partition mechanism. Up to about 53% of the dissolved benzoic acid was sorbed by CTAB-birnessite; in contrast, only 16% of the dissolved benzoic acid was sorbed by birnessite. These results indicate that CTAB-birnessite can be a potential sorbent for benzoic acid removal. 相似文献
9.
In this study, a modified adsorbent, alginate complex beads, was prepared and applied to the removal of mixed contaminants from wastewater. The alginate complex beads were generated by the immobilization of powdered activated carbon and synthetic zeolites onto alginate gel beads, which were then dried at 110 °C for 20 h until the diameter had been reduced to 1 mm. This dry technique increased the hardness of the adsorbent to assure its durability and application. The adsorption onto the alginate complex beads of organic and inorganic compounds, as target contaminants, was investigated by performing both equilibrium and kinetic batch experiments. From the adsorption isotherms, according to the Langmuir equation, the alginate complex bead was capable of effectively removing benzene, toluene, zinc and cadmium. From kinetic batch experiments, the removal efficiencies of benzene, toluene, zinc and cadmium were found to be 66.5, 92.4, 74.1 and 76.7%, respectively, for initial solution concentrations of 100 mg L(-1). The results indicated that the adsorbent developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or contaminated groundwater. 相似文献
10.
The arsenic-removing capacity of some low-cost materials was tested by passing aqueous arsenic solutions (16 and 57 ppb) of pH 7 through materials packed in plastic buckets. It was found that the initial concentration of arsenic solutions and their retention time in adsorbents greatly affected the removal of arsenic from the aqueous solution. Maximum arsenic removal was observed when the packed materials were exposed to 16 ppb of arsenic solution. With 57 ppb of arsenic solution, arsenic removal was reduced on that of 16 ppb; however, the reduced arsenic concentration was close to the recommendations of the World Health Organization drinking water quality guidelines. 相似文献
11.
In this study, the removal of copper(II) and cadmium(II) ions from aqueous solutions by biosorption onto pine cone was studied. Variables that affect the biosorption process such as pH, biosorbent dosage, initial metal ion concentration, contact time and temperature of solution were optimized. Experimental data were fitted to Langmuir, Freundlich, Dubinin Radushkevich and Temkin isotherm models to investigate the equilibrium isotherms. Pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were used to determine the biosorption mechanism. The thermodynamics of biosorption were studied for predicting the nature of biosorption. Experimental results showed that pine cone could be evaluated as an alternative precursor for removal of heavy metal ions from aqueous solutions, due to its high biosorption capacity, availability, and low cost. 相似文献
12.
涂铁砂过滤去除水中磷的研究 总被引:1,自引:0,他引:1
试验制备一种涂铁砂(IOCS)滤料用于对水中磷的去除,与石英砂相比IOCS表面粗糙,空隙多,比表面积大,且附有α-Fe_2O_3晶体,吸附能力增强。通过过滤试验研究了IOCS滤料在不同的试验条件下(pH、空床接触时间、进水磷浓度、滤床深度等)对水中磷的去除效果。结果表明:中性条件下磷的去除效果最佳,pH太高和太低都不利于磷的去除;中性条件下,当空床接触时间为13min,进水磷浓度为1.0 mg/L,滤床深度为50 cm时,去除效果较好,平均去除率可达82%;空床接触时间、进水磷浓度、滤床深度等是影响过滤运行周期的主要因素。 相似文献
13.
This paper reports the results of laboratory studies on the removal of ammonium from aqueous solutions using struvite pyrogenation residues. A series of experiments were conducted to examine the effects of the pyrogenation temperature (90-210 °C) and time (0.5-4 h) on the ammonium release of struvite. In addition, the pyrolysate of struvite produced at different pyrogenation temperatures and times was recycled for ammonium removal from aqueous solutions. The experimental results indicated that the ammonium release ratio of struvite increased with an increase in the pyrogenation temperature and time, and the struvite pyrolysate used as magnesium and phosphate source for ammonium removal was produced at the optimal condition of pyrogenation temperature of 150 °C for 1 h. Furthermore, experimental results showed that the optimum pH and pyrolysate dosage for ammonium removal from 100 ml synthetic wastewater (1,350 mg ammonium/L) were at pH 9 and 2.4 g of struvite pyrolysate, respectively, and initial ammonium concentration played a significant role in the ammonium removal by the struvite pyrolysate. In order to further reduce the cost of struvite precipitation, the struvite pyrolysate was repeatedly used for four cycles. The results of economic analysis showed that recycling struvite for three process cycles should be reasonable for ammonium removal, with ammonium removal efficiencies of over 50% and a reduction of 40% in the removal cost per kg NH(4)(+). 相似文献
14.
This study describes the successful separation of acrylonitrile (ACN) from dilute aqueous streams using pervaporation process. The influences of ACN feed concentration, permeate pressure, operating temperature, feed flow rate and membrane thickness on the membrane separation performance were investigated. The results showed that with an increase in ACN concentration in the feed solution, the permeation flux of ACN increased while the enrichment factor decreased. It was also indicated that increasing the permeate pressure reduced the driving force for mass transfer and consequently the permeation flux dropped while the enrichment factor enhanced. Polydimethylsiloxane membranes used in this study showed very good properties in the separation process, leading to enrichment factors in the range of 70-140. Furthermore, the activation energy for pervaporation of both ACN and water calculated from Arrhenius plot indicated that the permeation of water through the membrane was more temperature dependant than ACN. 相似文献
15.
In this study, a composite adsorbent, layered double hydroxide (LDH)-coated attapulgite (LDH-AP), was synthesized and characterized. Its potential application for LDH stabilizer and phosphate (P) removal from aqueous solution was evaluated using the batch mode and continuous mode in a packed bed column. The batch experiments revealed that the data of P adsorption onto LDH-AP could be well described by the Freundlich equation, and the maximum adsorption capacity was estimated to be 6.9 mg/g. The column experiments were conducted in the tap water and the results indicated that the competing anions could slightly decrease phosphate removal. The saturated column was regenerated by 0.2 mol/L of NaOH and the regenerated column was examined for its reuse in phosphate removal. The results of this study suggested that attapulgite could be used as an applicable stabilizer of LDH and LDH-AP could be potentially used as a promising filtration medium for phosphate removal. 相似文献
16.
Raw diatomite modified by microemulsion (DMM) and manganese oxide (MnD) were used for the removal of Cr(III) ions from aqueous solution. The characteristics and performance of these two types of modified diatomite on Cr(III) ion adsorption were compared. The results indicate that the Cr(III) ion adsorption capacities of diatomite were considerably improved after modifications by manganese oxide (MnO) and microemulsion. The surface area of MnD was increased because of the formation of MnO on the diatomite surface, and that of DMM was promoted owing to the existence of the hydrolyzed aromatic acid. Because of the stronger surface ionized function, the adsorption performance of Cr(III) ions in DMM was better than that in MnD. Within the experimental range of pH (i.e. 2.2-6.3), the Cr(III) ion removal of DMM (35-70%) was higher than that of MnD (33-59%) owing to the different electrostatic forces between the Cr(III) ion and the surface of the modified diatomite. The Cr(III) ion removal in MnD and DMM was improved with the increase of synthetic solution concentration in volumes from 0 to 2,500 mL. 相似文献
17.
以铅锌矿尾矿(TLZO)作为吸附剂,研究不同条件下吸附水溶液中碱性品绿(BG)的特性,并对其吸附机理进行探讨。结果表明:pH值对BG的吸附有显著影响,最佳pH值为7.0;TLZO吸附BG是一个快速的过程,40min即达到平衡。随着初始浓度的增加,吸附量越大,达到平衡所需的时间越长;动力学数据较好地符合拟二级动力学方程。初始阶段外扩散过程对TLZO吸附BG的速率影响较大;在内扩散过程中,同一初始浓度下速率常数Kp,2>Kp,3,同一扩散阶段的速率随着初始浓度的升高而升高。TLZO对BG的等温吸附行为较好地符合Freundlich吸附等温模型。 相似文献
18.
研究了SBR活性污泥对重金属离子(Cu2+、Zn2+、Mn2+、Fe3+)的吸附作用。结果表明:在30℃温度下,pH为5时,其对Cu2+、Zn2+、Mn2+的去除率达到最大值50%左右;当pH为3时,对Fe3+的去除率达到最大值73.6%。吸附动力学过程可用二级吸附速率方程描述。在10~30℃温度范围内,随着温度的升高,Cu2+、Zn2+、Mn2+、Fe3+的去除率分别由54.6%、46.3%、45.3%6、8.9%,增大到58.6%、51.3%、49.6%、73.6%。当重金属离子初始质量浓度为50 mg/L,污泥投加量为0.2 g时,Cu2+、Zn2+、Mn2+和Fe3+的去除率达到最大值,分别为61.5%、54.3%、53.3%和76.2%。吸附等温线结果表明,Cu2+、Zn2+、Mn2+、Fe3+在吸附剂上的吸附可用Freundlich方程描述。 相似文献
19.
In recent years, electrocoagulation has been successfully used for wastewater treatment and is efficient in heavy metal ions removal. In the present work, electrocoagulation has been used for the removal of Hg(II) from synthetic wastewaters containing up to 20 mg/L of mercury. The electrode materials used are stainless steel (SS) and aluminum (Al). The effects of operating parameters, viz., current density, time of electrocoagulation, distance between electrodes, initial pH of the solution, presence of electrolyte in the solution and temperature have been studied. It was observed that more than 99% Hg(II) removal can be achieved by keeping the distance between SS and Al electrodes from 2 to 6 cm and initial pH range from 3 to 7. The results show that the pseudo second-order kinetics fits the data well. Also, preliminary cost estimation was reported. 相似文献
20.
Muibat Diekola Yahya Kehinde Shola Obayomi Mohammed Bello Abdulkadir Yahaya Ahmed Iyaka Adeola Grace Olugbenga 《水科学与水工程》2020,13(3):202-213
In this experiment, cobalt ferrite-supported activated carbon (CF-AC) was developed and characterized via the wet impregnation method for the removal of Cr and Pb(II) ions from tannery wastewater. Batch adsorption was carried out to evaluate the effect of experimental operating conditions (pH of solution, contact time, adsorbent dose, and temperature), and the removal efficiencies of Cr and Pb(II) ions by the developed adsorbents were calculated and recorded for all experimental conditions. These variables were estimated and reported as removal efficiencies of 98.2% for Cr and 96.4% for Pb(II) ions at the optimal conditions of 5, 0.8 g, 80 min, and 333 K for pH, adsorbent dose, contact time, and temperature, respectively. The equilibrium for the sorption of Cr and Pb(II) ions was studied using four widely used isotherm models (the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models). It was found that the Freundlich isotherm model fit better with the coefficient of determination (R2) of 0.948 4 and a small sum of square error of 0.000 6. The maximum adsorption capacities (Qm) of Pb(II) and Cr adsorbed onto CF-AC were determined to be 6.27 and 23.6 mg/g, respectively. The adsorption process conformed well to pseudo-second order kinetics as revealed by the high R2 values obtained for both metals. The thermodynamic parameters showed that adsorption of Cr and Pb(II) ions onto CF-AC was spontaneous, feasible, and endothermic under the studied conditions. The mean adsorption energy (E) values revealed that the adsorption mechanism of Cr and Pb(II) by CF-AC is physical in nature. The results of the study showed that adsorbent developed from CF-AC can be efficiently used as an environmentally friendly alternative adsorbent, for removal of Cr and Pb(II) ions in tannery wastewater. 相似文献