首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a need to develop effective stormwater filters for passive (without any addition of chemicals or energy) and effective removal of pathogens in order to mainstream stormwater harvesting. This study focuses on the development of coated granular activated carbon (GAC) filtration material in order to develop filters for effective removal of pathogens from urban stormwater. Several laboratory trials were performed to gauge the effectiveness of the filters, which use a mixture of the zinc-sulphate-heptahydrate coated GAC and sand, on the removal of Escherichia coli (E. coli) from semi-natural stormwater. On average, a 98% removal of the inflow concentration of E. coli was achieved. Furthermore, there was also an improvement of approximately 25% in the removal of phosphorous. However, it was found that the treated material was leaching zinc. It was important to determine whether the observed removal of E. coli was indirectly caused by the sampling methodology. The results showed that the inactivation of the E. coli in the collected sample was small compared with the inactivation which actually occurred within the filter. This provides much promise to the filter, but the presence of zinc in the outflow demonstrates the need for further investigation into the stabilisation of the coating process.  相似文献   

2.
Sorption experiments were used to assess the ability of various materials (sand, compost, packing wood, ash, zeolite, recycled glass and Enviro-media) to remove heavy metal contaminants typically found in stormwater. Compost was found to have the best physicochemical properties for sorption of metal ions (Cu, Zn and Pb) compared with sand, packing wood, ash, zeolite and Enviro-media. The compost sorption of these metal ions conformed to the linear form of the Langmuir adsorption equation with the Langmuir constants (q,) for Zn(ll) being 11.2 mg/g at pH 5. However, compost was also found to leach a high concentration of dissolved organic carbon (DOC, 4.31 mg/g), compared with the other tested materials. Various combinations of sand, compost and other materials were observed to have excellent heavy metal removal (75-96% of Zn and 90-93% of Cu), with minimal DOC leaching (0.0013-2.43 mg/g). The sorption efficiency of the different Enviro-media mixes showed that a combination of traditional (sand) and alternative materials can be used as an effective medium for the treatment of dissolved metal contaminants commonly found in stormwater. The application of using recycled organic materials and other waste materials (such as recycled glass) also provides added value to the products life cycle.  相似文献   

3.
Innovative Water Sensitive Urban Design (WSUD) systems are being investigated at three locations to the north and south of Sydney, Australia. These systems contain porous concrete pipes that are designed so that stormwater exfiltrates through the permeable walls of the pipes into the surrounding substrate media material. The porous pipes and media material treat the passing stormwater. The primary aim of the overall project is to develop a model to describe the treatment effectiveness of confined WSUD systems. This paper focuses on the system located at the Weathertex Industrial Site, Heatherbrae. Due to wood processing operations that occur at this site, it is recognised that the surface runoff will carry a heavy organics loading. Granulated Activated Carbon (GAC) is recognised for its ability to reduce the concentration of dissolved organics present in both wastewater and stormwater. GAC was therefore chosen as a filtration medium to be investigated at this site. To maximise the effectiveness of the GAC, extensive laboratory batch studies were undertaken prior to the field system being constructed to determine the optimum GAC/sand ratio. The purpose of the experimental work was to assess the dissolved organic removal potential through sorption of various concentrations of GAC. The aim of this paper is to describe these laboratory experiments and discuss how they related to the field system. Through these experiments it was determined that a sand/GAC ratio of 25:1 was ideal for the media material at the Heatherbrae site.  相似文献   

4.
Laboratory dual media filtration experiments were conducted (a) in direct filtration mode using model raw water moderate in turbidity and low in DOC, and (b) in conventional filtration mode treating water moderate in turbidity and high in DOC. Model simulations of filter performance for the removal of particles provided hypotheses for the experimental studies of dual media filtration. An increase in alum dose in direct filtration mode, while improving filter performance, also showed some disadvantages, including rapid development of head loss. Suboptimal dose in direct filtration significantly impaired the filter performance. In conventional mode, the effect of alum dose on the filter performance, while obvious, was not as dramatic as in direct filtration. Ripening indicated by particle counts occurred earlier than by turbidity and breakthrough of particle counts started earlier than breakthrough of turbidity, suggesting that turbidity can be used as a more conservative monitor of filter performance during the ripening period to minimise the risk of passage of small particles, while particle counts can be considered a more sensitive indicator of deteriorating filter performance during the breakthrough period. The lower sand layer served as a multiple barrier for particle when the performance of the anthracite layer was not effective.  相似文献   

5.
Nutrients can cause eutrophication of natural water bodies. Thus, urban stormwater which is an important nutrient source in urbanised areas has to be treated in order to reduce its nutrient loads. Biofilters which use soil filter media, biofilms and plants, are a good treatment option for nutrients. This paper presents the results of a biofilter column study in cold temperatures (+2 degrees C, +8 degrees C, control at +20 degrees C) which may cause special problems regarding biofilter performance. It was shown that particle-bound pollutants as TSS and a high fraction of phosphorus were reduced well without being negatively influenced by cold temperatures. Nitrogen, however, was not reduced; especially NO(x) was produced in the columns. This behaviour can be explained with both insufficient denitrification and high leaching from the columns.  相似文献   

6.
This study investigated the feasibility of using granular activated carbon (GAC) to remove bromate ion (BrO3-) and assimilable organic carbon (AOC) from drinking water through a rapid small-scale column test (RSSCT) method and a pilot-scale study. Results from RSSCT indicated that the GAC capacity for BrO3- removal was dependent on the GAC type, empty bed contact time (EBCT), and source water quality. The GAC with a high number of basic groups and higher pHpzc values showed an increased BrO3- removal capacity. BrO3- removal was improved by increasing EBCT. The high EBCT provides a greater opportunity for BrO3- to be adsorbed and reduced to Br- on the GAC surface. On the other hand, the presence of dissolved organic carbon (DOC) and anions, such as chloride, bromide, and sulfate, resulted in poor BrO3- reduction. In the GAC pilot plant, a GAC column preloaded for 12 months achieved a BrO3- and AOC removal range from 79-96% and 41-75%, respectively. The BrO3- amount removed was found to be proportional to the influent BrO3- concentration. However, the BrO3- removal rate apparently decreased with increasing operation time. In contrast, the AOC apparently increased during the long-term operation period. This may be a result of the contribution due to new GAC being gradually transformed into biological activated carbon (BAC), and the bacterial biomass adsorbed on GAC surface hindering BrO3- reduction by GAC either by blocking pores or adsorbing at the activated sites for BrO3- reduction.  相似文献   

7.
Improved urban water management in Australia is of national importance. Water resources are stretched and urban runoff is a recognized leading cause of degradation of urban waterways. Stormwater recycling is an option that can contribute to easing these problems. Biofilters are effective structural stormwater pollution control measures with the potential for integration into stormwater treatment and recycling systems. However, premature clogging of biofilters is a major problem, with resulting decreased infiltration capacity (and hence the volume of stormwater the system can detain) and increased detention time. This paper presents preliminary findings with respect to the effect of clogging on pollutant removal efficiency in conventional stormwater filter media. A one-dimensional laboratory rig was used to investigate the impact of clogging on pollutant removal efficiency in a conventional biofiltration filter media (gravel over sand). Both the individual gravel layer and the overall multi-filter were highly efficient at removing suspended solids and particulate-associated pollutants. This removal efficiency was consistent, even as the filters became clogged. Removal of dissolved nutrients was more variable, with little reduction in concentrations overall. Although preliminary, these results challenge the concept that increased detention time improves the treatment performance of stormwater filtration systems.  相似文献   

8.
Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 microm latex microspheres, possibly due to increased favorable electrostatic interactions.  相似文献   

9.
Biofilters are common, low energy technologies used for the treatment of urban stormwater. While they have shown promising results for the removal of stormwater microorganisms, certain factors affect their performance. Hence, this study investigated the effects of particle-microbial interaction, inflow concentration, antecedent microbial levels and plant species on microbial removal capacity. A biofilter column study was set up to evaluate removal performance and a sequential filtration procedure was used to estimate microbial partitioning. The columns were dosed with different concentrations of free phase Escherichia coli only and E. coli mixed with stormwater sediment. Results indicate that the microbial removal is significantly affected by inflow concentration and antecedent microbial levels. Leaching was only observed when a relatively low inflow concentration event occurred within a short period after a very high inflow concentration event. Finally, Lomandra longifolia showed better removal compared with Carex appressa.  相似文献   

10.
Stormwater filters are widely used in stormwater management, sometimes as standalone structures (e.g. stormwater filter beds), or as part of porous pavements, soak ways, infiltration basins and trenches. Due to the high levels of sediment present in stormwater, clogging is the main operational issue for these systems. A laboratory-based study was conducted to investigate the effect of filter bed design variables on the clogging phenomenon in non-vegetated stormwater filters with high infiltration rates. Design parameters studied include: filter media particle sizes (0.5 mm, 2 mm, 5 mm); depth of the filter bed (100 mm, 300 mm and 500 mm); and filter media packing configurations (layered or mixed). The size of filter media particles significantly impact the clogging process, as well as the overall sediment removal performance of the filters; filters with smaller particles had better sediment removal efficiency, but subsequently shorter lifespan. Deeper systems had longer lifespan compared with shallower ones, notwithstanding deeper systems removed more sediment over their life span. Having two layers of distinct sized media in the filter bed improved performance (e.g. volume of water treated; sediment removed) over the single-layered systems. However, the three-layered systems behaved similarly to two-layered systems. Mixed systems also showed improved performance, as compared with single-layered systems, and were similar to the three-layered systems. This study therefore suggests that simple modifications to a stormwater filtration system can help improve sediment removal performance and/or reduce maintenance intervals significantly, while only slightly affecting sediment removal performance.  相似文献   

11.
臭氧与活性炭深度处理微污染原水试验研究   总被引:4,自引:0,他引:4  
采用"预臭氧氧化 常规处理 GAC/O3-BAC深度处理"工艺针对南方某市微污染原水进行中试研究.结果表明:预臭氧能明显提高浊度、有机物和THMFP的去除效果,在此条件下常规出水浊度平均值<O.1 NTU,与无预处理相比,CODMn去除率提高17.52%,氯消毒后CHCl3浓度降低86.4%;O3-BAC工艺对有机物、CHCl3的去除效果和吸附寿命均优于GAC工艺,但生物膜的脱落会影响浊度的去除效果;随着炭床厚度增加,GAC滤池中,CODMn呈线性降低,而BAC滤池中,上部500~1 000 mm厚度内,CODMn快速降低并稳定在一定的水平上.  相似文献   

12.
饮用水处理中不同滤料除氨氮效果及需氧量研究   总被引:1,自引:0,他引:1  
对比研究了活性无烟煤、活性炭、石英砂以及无烟煤4种滤料过滤去除饮用水中氨氮的效果及其与需氧量的关系。试验结果表明,当氨氮低于2 mg/L时,4种滤料过滤都能够有效去除氨氮,水中溶解氧逐渐耗尽;当氨氮浓度高于2 mg/L时,4种滤料的去除率均有所下降,但相比石英砂和无烟煤而言,活性无烟煤和活性炭过滤能够更有效地去除氨氮。纯氧曝气能够将溶解氧浓度提高到25 mg/L,从而大幅度改善4种滤料对氨氮的去除效果;活性无烟煤和活性炭过滤可将大部分氨氮转化为硝酸盐,但石英砂和无烟煤过滤则会发生亚硝酸盐积累现象。在活性无烟煤和活性炭过滤去除氨氮过程中,氨氮去除量与溶解氧的平均比例为1∶4.25,略低于理论值。这种定量关系对于生物过滤去除氨氮工艺的设计和运行具有指导意义。  相似文献   

13.
Stormwater reuse: designing biofiltration systems for reliable treatment.   总被引:1,自引:0,他引:1  
Stormwater reuse is increasing in popularity as a technique for overcoming water shortages in urban Australia. However, technology for the reliable treatment of stormwater for reuse is still not fully developed. This paper presents the first steps in refining biofilters for stormwater reuse. Six different filter media were selected, to target specific stormwater pollutants, as well as support plant growth. They were tested in the laboratory, where the filters were dosed three times per week with semi-synthetic stormwater for five weeks. Pollutant removal performance was monitored, and revealed that all soil-based filters performed similarly (while sand filters behaved somewhat differently). All filters removed more than 80% of solids and greater than 90% of lead, copper, and zinc. Three filter types were able to remove some phosphorus (particularly in the top 30 cm of the media). Apart from sand, all filter media were net producers of nitrogen, leading to an important conclusion that non-vegetated, soil-based filters are not suitable for targeting nutrients. However, since heavy metals are the primary pollutant of concern with respect to stormwater reuse for irrigation (the most popular end-use), it was concluded that biofilters may be promising technologies for treatment of stormwater for reuse.  相似文献   

14.
乙苯是净水厂原水突发水质污染的高风险物质之一.通过中试研究了应对原水突发乙苯污染的应急处理工艺.结果表明,常规工艺难以去除水中乙苯,向原水中投加粉末活性炭(PAC)与强化常规工艺联用可有效去除水中乙苯,保证处理后水质达到《生活饮用水卫生标准》(GB 5749-2006)要求;PAC与原水混合阶段是乙苯去除的主要阶段,去除率为78.9%~97.4%,强化常规工艺可进一步去除水中低浓度乙苯,颗粒活性炭滤柱作为安全余量,是水质安全保障的最后关口.基于中试结果,给出了应对原水突发乙苯污染时PAC对乙苯的吸附能力.  相似文献   

15.
Biofiltration systems are becoming a popular stormwater treatment device in water sensitive urban design for the removal of fine particulate and dissolved pollutants from stormwater. However, there is limited published data on the effectiveness of these systems for nutrient removal. We constructed biofiltration mesocosms to assess nutrient removal (nitrogen, phosphorus and carbon) under experimental conditions. Different types of media were compared (gravel, sand, and sandy-loam) in vegetated and non-vegetated mesocosms (six treatments in total). Five plant species were used. Vegetated sand and vegetated sandy-loam provided the best overall treatment. Vegetated mesocosms were very effective in removing nitrogen (63-77% removal) and phosphorus (85-94% removal) from synthetic stormwater, and removed substantially more nutrients than the non-vegetated treatments. All treatments removed a substantial portion of the carbon from the stormwater (28-66%). When flushed with tap water, nitrogen and phosphorus were retained by the vegetated mesocosms, but leached from the non-vegetated mesocosms. Plant growth was most vigorous in the sandy-loam media, indicating that this is a good growth media, even without the addition of organic matter.  相似文献   

16.
Understanding the fate of effluent organic matter (EfOM) and natural organic matter (NOM) through riverbank filtration is essential to assess the impact of wastewater effluent on the post treatment requirements of riverbank filtrates. Furthermore, their fate during drinking water treatment can significantly determine the process design. The objective of this study was to characterise bulk organic matter which consists of EfOM and NOM during riverbank filtration using a suite of innovative analytical tools. Wastewater effluent-derived surface water and surface water were used as source waters in experiments with soil columns. Results showed the preferential removal of non-humic substances (i.e. biopolymers) from wastewater effluent-derived surface water. The bulk organic matter characteristics of wastewater effluent-derived surface water and surface water were similar after 5 m soil passage in laboratory column experiment. Humic-like organic matter in surface water and wastewater effluent-derived surface water persisted through the soil passage. More than 50% of total dissolved organic carbon (DOC) removal with significant reduction of dissolved oxygen (DO) was observed in the top 50 cm of the soil columns for both surface water and wastewater effluent-derived surface water. This was due to biodegradation by soil biomass which was determined by adenosine triphosphate (ATP) concentrations and heterotrophic plate counts. High concentrations of ATP in the first few centimeters of infiltration surface reflect the highest microbial activity which correlates with the extent of DOC reduction. Good correlation of DOC removal with DO and biomass development was observed in the soil columns.  相似文献   

17.
The current best option to upgrade constructed wetlands (CWs) for phosphorus (P) retention, in terms of efficiency, cost and simplicity, consists in using media having a strong P affinity. The media can be used either in the planted beds or in a filtration system downstream of the beds. The use of slag filters was shown to be efficient for removing P from wastewater as it represented a slow release source of calcium and hydroxide, favouring the formation of hydroxyapatite. Our study aimed at maximising the P retention capacity of slag filters located at the outlet of CWs since electric arc furnace slag has been shown to inhibit the growth of macrophytes when used in the filtration matrix. Bench-scale columns (Vtot = 6.2 L) filled with various combinations of filter media (slag, granite, limestone) of different sizes (2-5, 5-10, 10-20 mm) were fed on-site during four months with a CW effluent (in mg/L: 30 COD, 30 TSS, 10 Pt). Results showed that the best media combination enabling the maximum o-PO4 retention (more than 80% removal without clogging) consisted in a series of a ternary mix column (slag 5-10 mm, granite 2-5 mm, limestone 5-10 mm) followed by a slag column (slag 5-10 mm). Pilot scale columns (Vtot = 300 L), filled with the best media combination, were installed at the outlet of a 28 m2 CW. These columns showed more than 75% removal efficiency during one year and were designed to be easily replaced each year.  相似文献   

18.
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.  相似文献   

19.
The quality of drinking water is sometimes diminished by the presence of certain compounds that can impart particular tastes or odours. One of the most common and problematic types of taste and odour is the earthy/musty odour produced by geosmin (trans-1, 10-dimethyl-trans-9-decalol) and MIB (2-methylisoborneol). Taste and odour treatment processes including powdered activated carbon, and oxidation using chlorine, chloramines, potassium permanganate, and sometimes even ozone are largely ineffective for reducing these compounds to below their odour threshold concentration levels. Ozonation followed by biological filtration, however, has the potential to provide effective treatment. Ozone provides partial removal of geosmin and MIB but also creates other compounds more amenable to biodegradation and potentially undesirable biological instability. Subsequent biofiltration can remove residual geosmin and MIB in addition to removing these other biodegradable compounds. Bench scale experiments were conducted using two parallel filter columns containing fresh and exhausted granular activated carbon (GAC) media and sand. Source water consisted of dechlorinated tap water to which geosmin and MIB were added, as well as, a cocktail of easily biodegradable organic matter (i.e. typical ozonation by-products) in order to simulate water that had been subjected to ozonation prior to filtration. Using fresh GAC, total removals of geosmin ranged from 76 to 100% and total MIB removals ranged from 47% to 100%. The exhausted GAC initially removed less geosmin and MIB but removals increased over time. Overall the results of these experiments are encouraging for the use of biofiltration following ozonation as a means of geosmin and MIB removal. These results provide important information with respect to the role biofilters play during their startup phase in the reduction of these particular compounds. In addition, the results demonstrate the potential biofilters have in responding to transient geosmin and MIB episodes.  相似文献   

20.
Characteristics of solids recovered from stormwater best management practice (BMP) facilities, including stormwater ponds, constructed wetlands, an infiltration basin, a biofilter, a stormwater treatment clarifier, and three-chamber oil and grit separators were described with respect to their metal chemistry. The reported trace metal concentrations in BMP sediments were assessed against the Ontario Sediment Quality Guidelines. Between 80 to 100% of all samples were marginally-to-intermediately polluted by Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn. Severe pollution of sediments was noted for Cr (122 microg/g), Cu (151 and 196 microg/g), Mn (1,259 and 1,433 microg/g), and Zn (1,116 microg/g), at several facilities studied, and even higher levels of metals were reported in the literature for certain oil and grit separators. With respect to individual BMPs, the severe pollution was found in sediments from oil and grit separators (for Cd, Cr, Cu, Pb and Zn), the stormwater clarifier sludge (Cu, Mn and Zn), a biofilter (Cu and Mn), an industrial area stormwater pond (Cu only), and a commercial/residential pond (Cr only). Finally, the chemical pollution of pond sediment triggered toxicity testing at some of the facilities studied, and sediment toxicity was confirmed at several sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号