首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mexican petrochemical industry, Morelos S.A. de C.V., is one of the biggest and more important petroleum industries in Mexico and Latin America. It has an activated sludge system to treat its wastewater flow, which is approximately 7,000 m3/d. The wastewater contains volatile organic carbon substances classified as toxics. The old surface aeration system was changed for fine bubble diffusers; however, one major drawback of the new aeration system is that the temperature in the bioreactor has increased due to the compression of the air, which at the compressor exit reaches 85 degrees C. This effect results in the temperature in the bioreactor attaining 32 degrees C during the fall, whereas in the spring and summer, the bioreactor temperature reaches higher values than 40 degrees C. The high temperatures reduce the microorganism activity and cause a higher volatilisation rate of volatile compounds, among other effects, which affect the performance of the biological treatment. This work was performed to obtain a better modelling of the wastewater treatment from the petrochemical industry. The model describes the effect of the temperature on the performance of the biological treatment. The model was obtained from tests that were carried out in laboratory reactors with 14 L capacity, which were operated at different temperatures (from 30 to 45 degrees C), with the same wastewater and conditions as the actual system.  相似文献   

2.
The long start-up period of fluidized bed biofilm reactors is a serious obstacle for their wide installation in the anaerobic treatment of industrial wastewater. This paper presents the results of an anaerobic inverse turbulent bioreactor treating distillery wastewater during 117 days of operation at a laboratory scale. The pre-colonized bioparticles for this work were obtained from a similar reactor processing the same wastewater and which had a start-up period of 3 months. The system attained carbon removal efficiency rates between 70 and 92%, at an organic loading rate of 30.6 kg m(-3) d(-1) (chemical oxygen demand) with a hydraulic retention time of 11.1 h. The results obtained showed that the start-up period of this kind of reactors can be reduced by 3 using pre-colonized bioparticles.  相似文献   

3.
4.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

5.
In this study a process for biological treatment of toxic wastewater from a pharmaceutical company was developed. By simulations on a laboratory scale, the contribution of organic material and toxicity in wastewater from different sources was determined and the degradability of specific compounds were studied. The information obtained from these tests was used to improve the treatability of the wastewater at the sources. As an example a persistent organic phosphorous compound could be degraded after pre-treatment with chemical hydrolysis. By further simulations on a laboratory scale it was possible to screen through a large number of process configurations to determine the best working biological treatment A combination of fungal and bacterial treatment was found to remove toxicity from the wastewater more than a conventional bacterial treatment. The results from the laboratory studies were confirmed in pilot tests. A full scale treatment plant, which design is based on the results from these studies are presently under construction.  相似文献   

6.
曝气生物滤池(BAF)用于建筑中水处理试验研究   总被引:1,自引:0,他引:1  
曝气生物滤池是一种介于生物接触氧化法与生物流化床之间的生物膜污水处理工艺,其紧凑性、能耗及运行维护亦介于两者之间,非常适合用于建筑中水处理。为检验曝气生物滤池处理建筑中水的性能,分别采用人工配水和洗浴废水进行了试验测定和实际验证。验证试验表明,经曝气生物滤池处理后的洗浴废水几乎不需任何后续处理(混凝、沉淀、过滤)便可满足中水回用标准要求。  相似文献   

7.
During wastewater transportation in sewers conversion of organic matter into biomass takes place in bulk water and in bacterial biofilms. The biomass amount, the composition and the properties influences wastewater composition and the subsequent fate in the wastewater treatment plant. Because the biomass consists of both cell biomass and extracellular polymers having different properties, the biomass composition in biofilms from three different gravity sewers is reported here. Cell biomass was only a minor fraction of the organic matter in the biofilms and 70–98% of total organic carbon was found to be extracellular. The macromolecular composition of the biofilm was determined and the major part was protein. Also in the extracellular fraction protein was the largest fraction. Moreover, humic substances, polysaccharide, uronic acids and DNA could be extracted from all biofilm samples into an extracellular fraction. Between 30 and 40% of the COD from the total biofilm sample were not analysed by the methods used. Some variation in the content and composition of extracellular material was found among the different sewer lines. The results demonstrate that biofilm material from sewer lines entering a wastewater treatment plant mainly consists of heterogeneous extracellular organic material with protein as the dominating fraction.  相似文献   

8.
The pilot test of a new alternative for small wastewater treatment system has been conducted for two years. It consists of a hybrid bioreactor and the expert system including the programmable logic controller and human-machine interface. In order to monitor its status, the real-time data was transferred from the remote station to the central station via a wireless local area network. More efficient and stable performances were observed at automatic operating mode compared with the manual. On an average, COD, SS, T-N and T-P concentrations in the effluent from the hybrid bioreactor were less than 14, 7, 12 and 0.9 mg/L, respectively. According to the result from laboratory experiments, the quality of treated wastewater with chemical coagulation process followed by sand filtration was enough to be utilized again if a final disinfection step is included.  相似文献   

9.
Experimental facilities comprising 1.8 km of pipeline, 100 mm in diameter and pumping equipment, were installed in a wastewater treatment plant and operated continuously for more than one year to clarify the main factors governing hydrogen sulfide generation in pressure mains. The effects of temperature, organic matter, and sulfate on sulfide generation rate were investigated based on observed values. The sulfide generation rate depended significantly on wastewater temperature. It was confirmed not empirically but experimentally that the effect of temperature (T) was expressed by (1.065)T-20. In respect of organic matter, it is considered that there is a little effect of organic matter concentration on sulfide generation rate when the fluctuation of soluble organic matter concentration is slight. However, based on observed values, it was found that sulfide generation rate clearly depended on sulfate concentration when the biofilm was rather thick like these experiments. Also, partial penetration of sulfate into biofilm was confirmed using a biofilm model. Furthermore, biofilm model as a sound method for predicting sulfide generation rate was discussed.  相似文献   

10.
The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost.  相似文献   

11.
The aerated bioreactor is a promising technology for wastewater treatment. Activated carbon fiber (ACF) used as a biomembrane carrier in wastewater disposal has attracted much more concern recently. The high modulus polyacrylonitrile (PAN)-based ACF was successfully used as a biomembrane carrier for hard-to-biodegrade industrial organic wastewater disposal in a lab-scale aerated biomembrane reactor at room temperature. The biocompatibility test shows that the biomembrane grows quickly on the ACF filler (ACFF) surface; bacteria and microzoon can breed on the ACFF surface at high chemical oxygen demand (COD) concentration. The COD removal rate tests show that the ACFF bioreactor has high capability to remove COD.  相似文献   

12.
膜生物反应器在我国的研究发展展望   总被引:7,自引:0,他引:7       下载免费PDF全文
概述了膜生物反应器(MBR)的研究发展历史;指出污水回用和难降解有机废水的处理是MBR在我国推广应用的重要方向,总结MBR在我国污水回用和难降解有机废水处理中研究及其应用现状。对阻碍MBR推广应用的因素进行简单讨论,对MBR研究发展方向进行了展望。  相似文献   

13.
MBR工艺处理城镇污水处理厂污泥水中试研究   总被引:2,自引:0,他引:2  
将平板膜组件与传统脱氮除磷工艺相结合,构建了膜生物反应器强化生物脱氮除磷中试系统,并用于处理城镇污水处理厂的污泥系统废水。结果表明,出水CODCr、BOD5、NH3—N、TN和TP的平均浓度分别为70.8 mg/L、8.7 mg/L、15.1 mg/L、29.7 mg/L和0.38 mg/L,达到或接近了《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级标准。  相似文献   

14.
A new oxygen supply method to biofilm is proposed for simultaneous organic carbon removal and nitrification. The main feature of the method is use of hydrophobic porous membrane or oxygen enrichment membrane as substratum of biofilm. In the biofilm formed on oxygen permeable membrane, oxygen is supplied from the bottom to the surface of the biofilm through the membrane while organic pollutants are supplied from the surface to the bottom of the biofilm. The oxygen supply method allows nitrifiers near the bottom region to grow with less competition from BOD oxidizers. The microbial population was investigated in the biofilm formed on hydrophobic microfilter. Nitrifiers grew mainly in the bottom region while denitrifiers grew in the middle region of the biofilm formed on the membrane. Simultaneous organic carbon removal and nitrification were carried out successfully by the biofilm. Furthermore, the potential of the new oxygen supply method was demonstrated with the biofilm formed on an oxygen enrichment-type biomass carrier in a single-stage treatment of domestic wastewater. The nitrification rate was about 1.9 g/m2d and was comparable to that in the conventional biofilm process designed especially for nitrification.  相似文献   

15.
The concern with wastewater reuse as a sustainable water resource in urban areas has been growing. For the reclamation and distribution of wastewater, biofilm development deserves careful attention from the point of view of its promotion (e.g. biofiltration) and inhibition (e.g. clogging and hygiene problems). As the first step to control biofilm development, bacterial biofilm communities in tertiary treatment processes were characterized by using molecular biological methods. The result of clone library analysis showed that Nitrospirae-related (nitrite-oxydizing bacteria) and Acidobacteria-related (probably oligotrophic bacteria) groups were dominant. The ratio of the Nitrospirae-related group to the Acidobacteria-related group was associated with ammonia load, whereas other operational conditions (process, media, temperature, salt) did not clearly affect the phylum-level community or the dominant sequence of nitrifying bacteria. The result of real-time PCR also indicated that high ammonia load promotes the proliferation of nitrite- and ammonia-oxidizing bacteria. Regarding water supply systems, some researchers also have suggested the dominance of Nitrospirae- and Acidobacteria-related groups in biofilm formed on water distribution pipes. In tertiary wastewater treatment, therefore, it is concluded that oligotrophic and autotrophic bacteria are the dominant groups in biofilm samples because assimilable organic carbon is too poor to proliferate various heterotrophic bacteria.  相似文献   

16.
Aerobic granulation (AG) and membrane bioreactor (MBR) are two promising, novel environmental biotechnological processes that draw interest of researchers working in the area of biological wastewater treatment. Membrane fouling in the combined aerobic granular membrane bioreactor (AGMBR) process and the conventional MBR process was investigated in this work. The irreversible fouling on hollow-fibre membranes in both reactors were observed with the multiple staining and confocal laser scanning microscope technique. Following physical and chemical washing, the external fouling layers were mostly removed. However, the biofilms built up in the interior surface of membrane remained and contributed to the irreversible fouling resistance. AGMBR retained most cells with granules, thereby reducing their penetration through membrane and thus the chance to form internal fouling layer. The internal biofilm layer was principally composed of live cells embedded in a matrix of proteins and polysaccharides, with that on AGMBR denser and thicker than that on MBR. Prevention of development of internal biofilm is essential to reduce irreversible fouling of AGMBR and MBR membranes.  相似文献   

17.
Pharmaceuticals are continually being introduced into the influent of municipal wastewater treatment plants (WWTPs). Developing a better understanding of pharmaceutical removal mechanisms within the different treatment processes is vital in preventing downstream contamination of our water resources. In this study, ibuprofen, a popular over-the-counter pain reliever, was monitored by taking wastewater samples throughout the City of Guelph municipal WWTP. Greater than 95% of ibuprofen was found to be removed in the aeration tank, with aerobic biodegradation being the dominant mechanism. For comparison, first-order kinetics were used to quantify ibuprofen biodegradation in a conventional WWTP aeration tank and in a membrane bioreactor (MBR) pilot plant. The rate constants, k biol, for the conventional tank and the MBR were determined to be (-6.8+/-3.3) L/g SS*d and (-8.4+/-4.0) L/g SS*d, respectively. These two rate constants were found to be statistically similar. Preliminary study of a biological nutrient removal pilot system also suggests that ibuprofen can be anaerobically degraded.  相似文献   

18.
Northern Aboriginal communities in Canada suffer from poor wastewater treatment. Treatment systems on 75% of Manitoban Aboriginal communities produce substandard effluent despite the presence of sophisticated treatment systems. A 200-litre, pilot-scale membrane bioreactor (MBR) was established on the Opaskwayak Cree Nation to investigate the feasibility of MBRs in mitigating Aboriginal wastewater treatment issues. The pilot system was remote controlled and monitored via the Internet using the program pcAnywhere. The community utilized two existing sequencing batch reactors (SBR) and three sand filters for wastewater treatment. The community wastewater was relatively weak and highly fluctuating which led to poorly settling sludge that readily fouled the sand filters. A comparison study between the MBR and SBR was undertaken from September to December 2003. Operated at a 10-hour hydraulic retention time and 20-day solids residence time, the MBR outperformed the SBR and sand filtration on BOD and suspended solids removal. Furthermore, the MBR showed high levels of nitrification despite relatively cold water temperatures.  相似文献   

19.
Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.  相似文献   

20.
Cytostatic agents are applied in cancer therapy and subsequently excreted into hospital wastewater. As these substances are known to be carcinogenic, mutagenic and toxic for reproduction, they should be removed from wastewater at their source of origin.In this study the fate and effects of the cancerostatic platinum compounds (CPC) cisplatin, carboplatin, oxaliplatin, 5-fluorouracil (5-FU) and the anthracyclines doxorubicin, daunorubicin and epirubicin were investigated in hospital wastewater. Wastewater from the in-patient treatment ward of a hospital in Vienna was collected and monitored for the occurrence of the selected drugs. A calculation model was established to spot the correlation between administered dosage and measured concentrations. To investigate the fate of the selected substances during wastewater treatment, the oncologic wastewater was treated in a pilot membrane bioreactor system (MBR) and in downstream advanced wastewater treatment processes (adsorption to activated carbon and UV-treatment). Genotoxic effects of the oncologic wastewater were assessed before and after wastewater treatment followed by a risk assessment.Monitoring concentrations of the selected cytostatics in the oncologic wastewater were in line with calculated concentrations. Due to different mechanisms (adsorption, biodegradation) in the MBR-system 5 - FU and the anthracyclines were removed < LOD, whereas CPC were removed by 60%. In parallel, genotoxic effects could be reduced significantly by the MBR-system. The risk for humans, the aquatic and terrestrial environment by hospital wastewater containing cytostatic drugs was classified as small in a preliminary risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号