首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioaccumulation and biosorption in microalgae are effective approaches for the removal of heavy metals (HMs) from river water. The objective of this study was to investigate the potential for use of acclimatized microalgae in the removal of HMs from the Yamuna River water as an acclimatizing medium. An active culture of Arthrospira platensis (A. platensis) was acclimatized to HMs up to a concentration of 100 mg/L. It was gradually exposed to increasing concentrations of HMs in five subsequent batches with a step increase of 20 mg/L to acclimatize live cells in the simulated Yamuna River water. The presence of high levels of HMs in the Yamuna River water caused growth inhibition. An empirical growth inhibition model was developed, and it predicted high threshold concentrations of HMs (210.7–424.5 mg/L), producing a positive specific growth rate of A. platensis. A. platensis also showed high average removal efficiencies of HMs, including 74.0% for Cu, 77.0% for Cd, 50.5% for Ni, 76.0% for Cr, 76.5% for Pb, and 63.5% for Co, from HMs-enriched Yamuna River water. The findings demonstrated that the maximum specific removal amounts of Cu, Cd, Ni, Cr, Pb, and Co were 54.0, 58.0, 39.0, 62.8, 58.9, and 45.3 mg/g, respectively. The maximum yields of the value-added products chlorophyll and phycocyanin were 2.5 mg/g (in a batch of 40 mg/L for Cd) and 1 054 mg/g (in a batch of 20 mg/L for Cu), respectively. Therefore, acclimatized A. platensis was proven to be a potential microalga not only for sequestration of HMs but also for production of valuable pigments.  相似文献   

2.
An algal-bacterial consortium was tested for the treatment from a coke factory. A Chlorella vulgaris strain and a phenol-degrading Alcaligenes sp. were first isolated from the wastewater treatment plant to serve as inocula in the subsequent biodegradation tests. Batch tests were then conducted with samples from the real wastewater or using a synthetic wastewater containing 325 mg phenol/l and 500 mg NH4+/l as target pollutants. Direct biological treatment of the real wastewater was not possible due to the toxicity of organic compounds. Activated carbon adsorption and UV(A-B)-irradiation were efficient in detoxifying the effluent for subsequent biological treatment as inoculation of pretreated samples with the algal-bacterial consortium was followed by complete phenol removal and NH4+ removal of 45%. Complete phenol removal and 33% NH4+ removal were achieved during the fed-batch treatment of artificial wastewater at 6 d hydraulic retention time (HRT). Under continuous feeding at 3.6 d HRT, phenol and NH4+ removal dropped to 58 and 18%, respectively. However, complete phenol removal and 29% NH4+ removal were achieved when 8 g NaHCO3/l was added to the artificial wastewater to enhance algal growth. This study confirms the potential of solar-based industrial wastewater treatment based on solar-based UV pretreatment followed by algal-bacterial biodegradation.  相似文献   

3.
The removal of Co, Ni, Cu and Zn from synthetic industrial wastewater was studied in subsurface flow constructed wetland microcosms filled with gravel or a gravel/straw mixture. Half of the microcosms were planted with Phragmites australis and half were left unplanted. All microcosms received low-strength wastewater (1 mg L(-1) of Co, Ni, and Zn, 0.5 mg L(-1) Cu, 2,000mg L(-1) SO4) during seven 14-day incubation batches. The pore water was regularly monitored at two depths for heavy metals, sulphate, organic carbon and redox potential. Sorption properties of gravel and straw were assessed in a separate experiment. A second series of seven incubation batches with high-strength wastewater (10 mg L(-1) of each metal, 2,000 mg L(-1) SO4) was then applied to saturate the substrate. Glucose was added to the gravel microcosms together with the high-strength wastewater. Sorption processes were responsible for metal removal during start-up, with the highest removal efficiencies in the gravel microcosms. The lower initial efficiencies in the gravel/straw microcosms were presumably caused by the decomposition of straw. However, after establishment of anaerobic conditions (Eh approximately -200 mV), precipitation as metal sulphides provided an additional removal pathway in the gravel/straw microcosms. The addition of glucose to gravel microcosms enhanced sulphate reduction and metal removal, although Phragmites australis negatively affected these processes in the top-layer of all microcosms.  相似文献   

4.
A method for abatement for chlorophenols (CPs) in contaminated water based on successive steps of catalytic hydrodechlorination (HDC) over Pd/C at ambient temperature and pressure, followed by aerobic biodegradation using yeast Candida tropicalis (C. tropicalis) was studied. The results showed that 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) could be easily and completely dechlorinated under mild conditions, ultimately yielding phenol as product. Subsequently, phenol (0-900 mg L(-1)) could be completely degraded by C. tropicalis within 30 h. Moreover, during the biodegradation of phenol, definite mass of ethanol (≤0.5%) caused a modest increase in the duration of the lag phase, but led to a great increase in the maximum degradation rates. This means that CPs with higher concentration could be efficiently detoxified under mild conditions by a combination of HDC and biodegradation in water or water-ethanol systems.  相似文献   

5.
The internal airlift loop reactor with ceramic honeycomb supports (IAL-CHS) was applied for biodegradation of 2,4-dichlorophenol (2,4-DCP) and phenol. A strain of DCP-degrading bacteria isolated from activated sludge, Achromobacter sp., was rapidly immobilized onto the ceramic honeycomb supports. The immobilized cells effectively biodegraded 2,4-DCP alone and together with phenol in batch and continuous-flow experiments. For example, 2,4-DCP was biodegraded from an influent concentration of 50 mg/L to less than 1 mg/L with a 6-h hydraulic retention time (HRT) in continuous flow tests. The immobilized biomass grew and accumulated through 2,4-DCP biodegradation, and the rate of degradation increased accordingly.  相似文献   

6.
The passive removal of commonly used reactive dye and two heavy metals, from aqueous solutions by inexpensive biomaterial, yeast Rhodotorula muciloginosa biomass, termed biosorption, was studied with respect to pH, initial dye concentration and initial metal ion concentration. The biomass exhibited maximum dye and chromium(VI) uptake at pH 5 and pH 6 for nickel(II) in media containing 50 mg/L heavy metal and 50 mg/L remazol blue. It was found that the highest chromium(VI) removal yields measured were 31.3% for 49.0 mg/l initial chromium(VI) concentrations. The nickel(II) removal yield was 32.5% for 22.3 mg/L. Higher R. Blue removal yields were obtained, such as 77.1% for 117.5 mg/L. The maximum dye biosorption yield was investigated in medium with a constant dye (approximately 50 mg/L) and increasing heavy metal concentration. In the medium with 48.8, 103.8 and 151.8 mg/L chromium(VI) and constant dye concentration, the maximum chromium(VI) biosorption was 7.4, 9.3 and 17.1%, whereas the maximum dye biosorption was 61.6, 56.6 and 55.9%. The maximum nickel(II) biosorptions in the medium with dye were 38.1, 22.1 and 8.8% at 23.7, 37.7 and 60.1 mg/L nickel(II) concentrations. In these media, dye biosorptions were 93.9, 86.4 and 93.3%, respectively.  相似文献   

7.
An indigenous mixed culture of microorganisms, isolated from a sewage treatment plant, was investigated for its potential to simultaneously degrade phenol and m-cresol during its growth in batch shake flasks. 2(2) full factorial designs with the two substrates as the factors, at two different levels and two different initial concentration ranges, were employed to carry out the biodegradation experiments. For complete utilisation of phenol and m-cresol, the culture took a minimum duration of 21 hrs at their low concentration of 100 mg/L each, and a maximum duration of 187 hrs at high concentration of 600 mg/L each in the multisubstrate system. The biodegradation results also showed that the presence of phenol in low concentration range (100-300 mg/L did not inhibit m-cresol biodegradation; on the other hand, presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. During the culture growth, a lag phase was observed above a combined concentration of 500 mg/L i.e., 200 mg/L m-cresol and 300 mg/L of phenol and above). Statistical analysis of the specific growth rate of the culture in the multisubstrate system was also performed in the form of ANOVA and Student 't' test, which gave good interpretation in terms of main and interaction effects of the substrates.  相似文献   

8.
生物颗粒活性炭处理苯酚废水   总被引:2,自引:0,他引:2  
研究了生物颗粒活性炭(BGAC)处理合成苯酚废水的效果和机理。结果表明,BGAC能够高效处理苯酚废水,处理效果优于活性污泥法和颗粒活性炭(GAC)吸附。BGAC、活性污泥和GAC分别对75 mg/L的苯酚废水连续处理,平均去除率分别为98%、60%和90%。通过苯酚出水pH值和反应器中溶解氧的变化情况分析,BGAC对苯酚废水的处理主要借助于活性炭的吸附和微生物降解的交替作用。  相似文献   

9.
The aim of the present study was to investigate how phenol modifies, through cometabolism, the biodegrading capability of 3-chlorophenol (3-CP) in a sequencing batch reactor seeded with a mixed culture obtained from a domestic sewage treatment plant. Two laboratory-scale SBRs, one fed 3-CP only and the other fed 3-CP and phenol in the same concentration, were seeded with the partially acclimated biomass. The removal capability in both reactors was measured for progressive increases in the feed organic loading. Cometabolism enhanced biodegradation of 3-CP by reducing both the initial lag period and the time required for the complete removal. 700 mg/L 3-CP was demonstrated to be the highest concentration, which could be completely degraded during the active phase (fill plus react) either in the presence or absence of phenol as the growth substrate even though the lag period was shorter when phenol was present. The operating strategy required modification for the complete removal of 800 mg/L 3-CP. An increase in the phenol to 3-CP ratio did, however, improve 3-CP degradation rate.  相似文献   

10.
土壤过滤系统处理农村生活污水的 试验研究   总被引:1,自引:0,他引:1  
采用一种土壤过滤系统处理农村生活污水,考察了该工艺对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果。实验结果表明,当水力负荷约为0.05 m3/(m2·d), 水力停留时间为3 d时。该土壤过滤系统对CODCr、BOD5、NH3-N、全氮(TN)和全磷(TP)的去除效果较好,平均去除率分别达到84.6%、83.3%、64.3%、59.8%和70%。出水CODCr约为18.3~42.1 mg/L,BOD5约为8.9~17.3 mg/L,NH3-N约为11.2~17.7 mg/L,TN约为21.2~31.3 mg/L,TP小于2.0 mg/L,出水水质优于农田灌溉水质标准(GB 5084—2005)。气温变化和进水污染物浓度对处理效果影响明显。总体上来讲,温度大于22 ℃时,进水污染物浓度越低处理效果越好。  相似文献   

11.
Cr(VI) biosorption and bioreduction ability of locally isolated Cr-resistant bacteria was investigated using the shake-flask technique. A mixture of S. epidermidis and B. cereus showed the highest minimum inhibitory concentration (MIC) level at 750 mg/L Cr(VI) followed by S. aureus and Bacillus sp. of 250 mg/L, and A. haemolyticus of 70 mg/L. From the Langmuir adsorption isotherm, the treatment of cells with heat-acid resulted in the highest amount of Cr(VI) adsorped (78.25 mg/g dry wt. for S. epidermidis) compared to heat-acetone (67.93 mg/g dry wt. Bacillus sp.), heat only (36.05 mg/g dry wt. S. epidermidis) or untreated cells (45.40 mg/g dry wt. S. epidermidis and B. cereus). FTIR analysis showed the involvement of amine groups in Cr(VI) adsorption. In the bioreduction study, A. haemolyticus was able to completely reduce Cr(VI) up to 50 mg/L.  相似文献   

12.
This study investigated the adsorption kinetics of dissolved copper(II) and zinc(II) by aerobic granular sludge. Two series of batch experiments were conducted at different initial copper(II), zinc(II) concentrations (Co) and initial granule concentrations (Xo). Results showed that the biosorption kinetics of individual copper(II) and zinc(II) by aerobic granules were closely related to Co and Xo. The maximum biosorption capacity of individual copper(II) and zinc(II) by aerobic granules was 246.1 mg g(-1) and 180 mg g(-1), respectively. In order to theoretically interpret the results obtained, two kinetic models previously developed for biosorption were employed and compared in this study. It was found that the model proposed by Liu et al. (2003) could fit the experimental data very well, but the second-order model failed to fit the data in some cases. It appears that aerobic granules would be potential biosorbent with high efficiency for the removal of dissolved copper(II) and zinc(II) from wastewater.  相似文献   

13.
In Taiwan, a substantial amount of thin-film transistor liquid crystal display (TFT-LCD) wastewater is produced daily due to an increasing production of the opto-electronic industry in recent years. The main components of TFT-LCD wastewater include dimethyl sulphoxide (DMSO), monoethanolamine (MEA), and tetra-methyl ammonium hydroxide (TMAH), which are recognized as non-or slow-biodegradable organic compounds and limited information is available regarding their biological treatablility. This study was conducted to evaluate the long-term performance of two bioreactors, anaerobic-aerobic (A/O) sequencing batch reactor (SBR) and aerobic membrane bioreactor (MBR), treating synthetic TFT-LCD wastewater containing DMSO, MEA, and TMAH with different loadings. For the A/O SBR, the influent wastewater was composed of 800 mg MEA/L, 430 mg DMSO/L, and 90 mg TMAH/L, respectively. After reaching steady-state, SBR was able to achieve more than 99% degradation efficiencies for the three compounds examined. For the case of aerobic MBR, the influent wastewater was composed of 550 mg MEA/L, 270 mg DMSO/L, and 330 mg TMAH/L, respectively, and degradation efficiencies for the three compounds achieved more than 99%. Although both different reactors shared similar and satisfactory degradation efficiencies for DMSO, MEA, and TMAH, the microbial ecology of these two reactors, as elucidated with molecular methods, was apparently different. The 16S rDNA-based cloning/sequencing results indicated that the dominant sequences retrieved from the aerobic MBR, including Hyphomicrobium denitrificans, Hyphomicrobium zavarzinii, Rhodobacter sp., and Methyloversatilis universalis, showed a clear linkage to their physiological properties of DMSO and TMAH degradation. On the other hand, Zoogloea sp., Chlorobium chlorochromatii, Agricultural soil bacterium, and Flavosolibacter ginsengiterrae were proliferated in the A/O SBR Run1, while Thiobacillus sp., Nitrosomonas sp., Thauera aromatica and Azoarcus sp. became dominant in Run2. Furthermore, the sequences retrieved from different reactors were used to establish the terminal restriction fragment length polymorphism (TRFLP) fingerprint methodology for monitoring the dynamics of dominant degrading bacteria in the aerobic MBR treating TFT-LCD wastewater.  相似文献   

14.
This study evaluated the potential use of brown seaweed Sargassum sp to sequester lead and copper (Pb(II) and Cu(ll)) from urban runoff based on batch as well as column experiments. The equilibrium data exhibited Langmuir isotherms. The adsorption capacity of this seaweed was found to be 196.1 mgg(-1) and 84.0 mg g(-1) for Pb(ll) and Cu(ll), respectively, which are in good agreement with those values obtained for the aqueous solution (188.6 mg g(-1) for Pb(ll) and 86.9 mg g(-1) for Cu(II)). The functional group analysis of the seaweed using FTIR demonstrated that the carboxyl functional groups are mainly responsible for biosorption. The cation exchange capacity of the biosorbent was 2.25 meq/g. This observation suggested that ion exchange mechanism is predominantly responsible for the metal ion uptake. The column study showed that the highest bed height and the lowest flow rate result in a substantial enhancement of the metals uptake with the biosorption uptake capacities being 264.3 mg Pb(ll) g(-1) and 86.0 mg Cu(ll) g(-1). In the binary system, the biosorption capacity was observed to be 208.7 mg Pb(ll) g(-1) and 61.0 mg Cu(II) g(-1). The predicted breakthrough curves by the Thomas adsorption model gave a good fit of the experimental data with r2 ranging from 0.92 to 0.99.  相似文献   

15.
Di(2-ethylhexyl)phthalate (DEHP) is a ubiquitous environmental contaminant due to its extensive use as a plasticiser and its persistence. Currently, there is no cost-effective treatment method for its removal from industrial wastewater. In a previous study, DEHP was effectively adsorbed from aqueous solution by biosorption onto chitinous materials. Biosorption can pre-concentrate DEHP from the aqueous phase for further treatment. As biosorption cannot degrade DEHP, in this study the degradation (and detoxification) of DEHP adsorbed onto chitinous material by photocatalytic oxidation (PCO) is attempted. PCO relies on hydroxyl radical (.OH), which is a strong oxidising agent, for the oxidative degradation of pollutants. It is a non-selective process which can degrade DEHP adsorbed onto chitinous material. The first part of this study is the optimisation of the degradation of adsorbed DEHP by PCO. Adsorption was carried out in the physicochemical conditions optimised in the previous study, with 500 mg/L chitin A and 40 mg/L DEHP at initial pH 2, 22+/-2 degrees C and 150 rpm agitation for 5 min. After optimisation of PCO, a 61% removal efficiency of 10 mg/L of DEHP was achieved within 45 min under 0.65 mW/cm2 of UV-A with 100 mg/L TiO2, and 10 mM of H2O2 at initial pH 12. The optimisation study showed that UV-A and TiO(2) are essential for the degradation of DEHP by PCO. The degradation intermediates/products were identified by GC-MS analysis. GC-MS results showed that the di(2-ethylhexyl) side chain was first degraded, producing phthalates with shorter side chains. Further reaction produced phathalic anhydride and aliphatic compounds such as alkanol and ester. The toxicities of parental and degradation intermediates in the solution phase and on chitinous materials were followed by the Microtox test. Results indicated that toxicity can be removed after 4 h treatment by PCO. Thus the decontamination of DEHP by integrating biosorption and PCO is feasible.  相似文献   

16.
The study was performed to assess the efficacy of an upflow anaerobic sludge blanket reactor for the degradation of mixtures of phenol and m-cresol. The experiments were performed in an upflow anaerobic sludge blanket reactor. The reactor was seeded with digested sewage sludge and was initially operated at 24 HRT. A phenol concentration of 200 mg/L was fed to the reactor to acclimatize the microorganisms to phenols. Subsequently the dosages of phenols were increased to 400 mg/L, 500 mg/L, and 600 mg/L. Cresols were introduced in the reactor when phenol removal efficiency of 77% was achieved at phenol concentration of 600 mg/L. Different phenol to m-cresol ratios were tried and the performance of the reactor was evaluated for each case. The result demonstrates that it is important to consider phenol/ m-cresol ratio to avoid toxic effects and both can be co-degraded successfully under anaerobic conditions provided proper acclimatization time is given.  相似文献   

17.
This extensive study aimed at quantifying the concentrations and removal efficiency of 23 metals and metalloids in domestic wastewater passing through full-scale plants. Nine facilities were equipped with secondary biological treatment and three facilities were equipped with a tertiary treatment stage. The metals investigated were Li, B, Al, Ti, V, Cr, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Mo, Ag, Cd, Sn, Sb, Ba, TI, Pb and U. Particulate and dissolved metals were measured using 24 h composite samples at each treatment stage. In influents, total concentrations of Cd, Sb, Co, Se, U, Ag, V were below a few microg/L, whereas at the other extremity Zn, B, Fe, Ti, Al were in the range of 0.1 to > 1 mg/L. It was demonstrated that secondary treatment stage (activated sludge, biodisc and membrane bioreactor) were efficient to remove most metals (removal rate > 70%), with the exception of B, Li, Rb, Mo, Co, As, Sb and V due to their low adsorption capacities. With the tested tertiary stages (polishing pond, rapid chemical settler, ozonation), a removal efficiency was obtained for Ti, Cr, Cd, Cu, Zn, Sn, Pb, Fe, Ag and Al, whereas a little removal (< 30%) was obtained for other metals.  相似文献   

18.
对城市污泥好氧消化过程中DEHP和DMP的降解进行了研究,并重点研究了难降解有机物DEHP在不同浓度下对易降解有机物DMP的抑制效果.研究表明,好氧消化污泥对DEHP和DMP有较强的降解能力,且对DMP的降解能力明显强于DEHP,好氧消化污泥在500 mg/L难降解有机物DEHP存在的情况下,对50 mg/L有机物DMP的去除率仍高达99.8%;当DEHP的初始浓度在200 mg/L时,对DMP的降解速率影响较大,而在50 mg/L和500 mg/L时,影响较小;但历经10 d以后,不同初始浓度的DEHP对DMP的好氧降解速率几乎没有影响.  相似文献   

19.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention time (HRT) on the performance of anaerobic baffled reactor (ABR) and aerobic completely stirred tank reactor (CSTR) were studied. In the first step the NB concentration was increased from 30 to 700 mg/L at constant COD and flowrates. Maximum COD removal efficiencies in ABR varied between 88-92% as NB concentrations increased from 30 to 210 mg/L. After this dose, COD removal efficiency decreased to 85 and 79% at NB concentrations of 550 and 700 mg/L, respectively. Removal efficiencies of NB were nearly 100% for all NB concentrations in ABR reactor effluent. In the second step, COD and NB concentrations were kept constant while HRT decreased from 10.38 days to 1 day. As HRT decreased from 10.38 to 2.5 days the COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents were 92-94% and 97-98%, respectively. As HRT decreased from 2.5 days to 1 day COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents decreased to 83 and 95%, respectively. This study showed that HRT is a more important operation parameter than increasing NB concentration in ABR/CSTR sequential reactor system. Although ABR/CSTR system exhibited good COD and NB removal efficiencies, the lower HRTs slightly decreased the removal efficiencies compared to increasing NB concentration.  相似文献   

20.
Treatment of wastewater containing high phenol concentrations (up to 4,000 mg/l, 1,600 kg/ha.d) in laboratory-scale stabilisation ponds enriched with activated sludge was studied. Phenol was biodegraded efficiently, even when fed as the sole carbon source. At influent concentrations of 1,000, 1,300, 1,600, 1,900, 2,500, 3,000 and 4,000 mg/l of phenol (loading rates of 400, 520, 640, 760, 1,000, 1,200 and 1,600 kg phenol/ha.d), the phenol removal efficiencies were 92, 89, 81, 81, 76, 65 and 22%, respectively. At 4,000 mg/l of phenol, the enriched ponds were significantly inhibited. The maximum phenol removal rate observed was 780 kg/ha.d, which is 7.7 times higher than the maximum value reported for attached-growth waste stabilisation ponds. All along the experiments, the enriched ponds showed removal rates 1.8-20.5 times higher than the values observed in control pond (not enriched). The results suggest that enrichment is an effective method to increase xenobiotic removal rates of stabilisation ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号