首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.  相似文献   

2.
Phase pure cordierite (2MgO · 2Al2O3 · 5SiO2) powder was prepared through solid state ceramic route. Silane coated cordierite powder was filled in the PTFE matrix through SMECH process comprising of sigma mixing, extrusion, calendering, followed by hot pressing, to fabricate flexible microwave substrates. Filling fraction of cordierite in the PTFE matrix was varied from 10 to 70 wt% and its effects on density, dielectric properties, coefficient of thermal expansion and water absorption were investigated. The morphology and filler distribution of the filled composite were studied by SEM. Waveguide cavity perturbation technique was employed to measure the dielectric properties of the composites at X-band (8.2–12.4 GHz). Dielectric constant and loss tangent were found increasing with filler loading from 10 wt% (ε r′ = 2.17, tan δ = 0.0007) to 60 wt% (ε r′ = 3.17, tan δ = 0.0034).  相似文献   

3.
In this paper, the structural and dielectric properties of BNO (BiNbO4) was investigated as a function of the external RF frequency and temperature. The BNO Ceramics, prepared by the conventional mixed oxide method and doped with 3, 5 and 10 wt. % Bi2O3–PbO were sintered at 1,025 °C for 3 h. The X-ray diffraction patterns of the samples sintered, shown the presence of the triclinic phase (β-BNO). In the measurements obtained at room temperature (25 °C) was observed that the largest values of dielectric permittivity (ε r ) at frequency 100 kHz, were for the samples: BNO5Bi (5 wt. % Bi2O3) and BNO5Pb (5 wt. % PbO) with values ε r ~ 59.54 and ε r ~ 78.44, respectively. The smaller values of loss tangent (tan δ) were for the samples: BNO5Bi and BNO3Pb (3 wt. % PbO) with values tan δ ~ 5.71 × 10−4 and tan δ ~ 2.19 × 10−4, respectively at frequency 33.69 MHz. The analysis as a function of temperature of the dielectric properties of the samples, obtained at frequency 100 kHz, showed that the larger value of the relative dielectric permittivity was about ε r ~ 76.4 at temperature 200 °C for BNO5Pb sample, and the value smaller observed of dielectric loss was for BNO3Bi sample at temperature 80 °C, with about tan δ ~ 5.4 × 10−3. The Temperature Coefficient of Capacitance (TCC) values at 1 MHz frequency, present a change of the signal from BNO (−55.06 ppm/°C) to the sample doped of Bi: BNO3Bi (+86.74 ppm/°C) and to the sample doped of Pb: BNO3Pb (+208.87 ppm/°C). One can conclude that starting from the BNO one can increase the doping level of Bi or Pb and find a concentration where one have TCC = 0 ppm/°C, which is important for temperature stable materials applications like high frequency capacitors. The activation energy (H) obtained in the process is approximately 0.55 eV for BNO sample and increase with the doping level. These samples will be studied seeking the development ceramic capacitors for applications in radio frequency devices.  相似文献   

4.
Polymer/Sr2ZnSi2O7 (SZS) ceramic composites suitable for substrate applications have been developed using the polymers polystyrene (PS), high density polyethylene (HDPE) and Di-Glycidyl Ether of Bisphenol A (DGEBA). The dielectric, thermal and mechanical properties of the composites are investigated as a function of various concentrations of the ceramic filler. The obtained values of relative permittivity, dielectric loss tangent, thermal conductivity and coefficient of thermal expansion of the composites are compared with the corresponding theoretical predictions. The relative permittivity of the polymer/ceramic composites increases with filler loading. The dielectric loss tangent also shows the same trend except for DGEBA/SZS composites. The major advantages of the ceramic loading are improvement in thermal conductivity and a decrease in the coefficient of thermal expansion. The tensile strength of the composites decreases with increase in filler content, whereas an improvement is observed in microhardness. The variation of relative permittivity (at 1 MHz) of the composites is also studied as a function of temperature.  相似文献   

5.
CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (T C), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d 33 = 130 pC/N, planar electromechanical coupling coefficient k p = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.  相似文献   

6.
Phase purity, microstructure, sinterability and microwave dielectric properties of BaCu(B2O5)-added Li2ZnTi3O8 ceramics and their cofireability with Ag electrode were investigated. A small amount of BaCu (B2O5) can effectively reduce the sintering temperature from 1075°C to 925°C, and it does not induce much degradation of the microwave dielectric properties. Microwave dielectric properties of ε r = 23·1, Q × f = 22,732 GHz and τ f = − 17·6 ppm/°C were obtained for Li2ZnTi3O8 ceramic with 1·5 wt% BaCu(B2O5) sintered at 925°C for 4 h. The Li2ZnTi3O8 +BCB ceramics can be compatible with Ag electrode, which makes it a promising microwave dielectric material for low-temperature co-fired ceramic technology application.  相似文献   

7.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

8.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

9.
The effect of Ca substitution for Sr on the phase, microstructure and microwave dielectric properties of the Sr5−x Ca x Nb4TiO17 composition series was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), an LCR meter, and vector network analyzer. Below 1450 °C, Sr5−x Ca x Nb4TiO17 (x = 1, 2, 3, or 4) compositions formed single-phase Sr4CaNb4TiO17, Sr3Ca2Nb4TiO17, Sr2Ca3Nb4TiO17, and SrCa4Nb4TiO17 ceramics, respectively. At x = 0 and 5, Sr5Nb4TiO17 and Ca5Nb4TiO17 formed, but along with Sr2Nb2O7 (at x = 0) and CaNbO3 and CaNb2O6 (at x = 5) secondary phases. Above 1450 °C, all the compositions formed two-phase ceramics. At low frequencies, a phase transition was observed in the composition Sr5Nb4TiO17. The substitution of Ca for Sr enabled processing of highly dense Sr2Ca3Nb4TiO17, with εr ~ 53.4, τf ~ −6.5 ppm/°C and Q u  × f o  ~ 1166 GHz. Further investigations are required to improve the quality factor of these ceramics for possible microwave applications.  相似文献   

10.
The LiCo3/5Fe1/5Mn1/5VO4 compound was successfully synthesized by solution-based chemical method. The variation of dielectric constant (εr) with frequency at different temperatures shows a dispersive behavior at low frequencies. Temperature dependence of εr at different frequencies indicates dielectric anomalies in εr at temperature (Tmax) = 220, 235, 245, 260 and 275 °C with (εr)max ~ 6,830, 2,312, 1,224, 649 and 305 for 10, 50, 100, 200 and 500 kHz, respectively. The variation of tangent loss with frequency at different temperatures shows the presence of dielectric relaxation in the material. The variation of relaxation time as a function of temperature follows the Vogel-Fulcher relation.  相似文献   

11.
MXTi7O16 (M = Ba and Sr; X = Mg and Zn) ceramics have been synthesized by the conventional solid state ceramic route. The dielectric properties such as dielectric constant (εr), loss tangent (tan δ) and temperature variation of dielectric constant (τεr) of the sintered ceramic compacts are studied using an impedance analyser up to 13 MHz region. The strontium compounds have relatively high dielectric constant and low loss tangent compared to the barium analogue. The phase purity of these materials has been examined using X-ray diffraction studies and microstructure using SEM method.  相似文献   

12.
New dielectric ceramics in the SrLa4−xSmxTi5O17 (0 ≤ x ≤ 4) composition series were prepared through a solid state mixed oxide route to investigate the effect of Sm+3 substitution for La+3 on the phase, microstructure and microwave dielectric properties. At x = 0–3, all the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1500–1580 °C. At x = 4, a mixture of Sm2Ti2O7 and SrTiO3 formed. The maximum Sm+3-containing single phase ceramics, SrLaSm3Ti5O17, exhibited relative permittivity (εr) = 42.6, temperature coefficient of resonant frequency (τ f ) = −96 ppm/oC and quality factor (Q u f o ) = 7332 GHz. An analysis of results presented here indicates that SrLa4−xSmxTi5O17 ceramics, exhibiting τ f  ~ 0 and εr ~ 53 could be achieved at x ~ 1.4 but at the cost of decrease in Q u f o .  相似文献   

13.
The nanocrystalline fine powders (∼80 nm) of (Ba1−x La x )(Fe2/3W1/3)1−x/4O3, (BLFW) (x = 0.0, 0.05, 0.10 and 0.15) were synthesized with a combined mechanical activation and conventional high-temperature solid-state reaction methods. Preliminary X-ray structural analysis of pellet samples (prepared from fine powders) showed formation of a single-phase tetragonal system. Detailed studies of dielectric properties (εr and tan δ) exhibit that these parameters are strongly dependent on frequency, temperature and La composition. The La-substitution increases the dielectric constant and decreases the tan δ up to 10% substitutions of La at the Ba-site, and then reversed the variation, and hence this composition is considered as a critical composition. This observation was found valid for structure, microstructures, dielectric constant, electrical conductivity, JE characteristics and impedance parameters also. Like in other perovskites (PZT, BZT), La substitution plays an important role in tailoring the properties of Ba(Fe2/3W1/3)O3 ceramics.  相似文献   

14.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

15.
Lead-free MnO2-doped K0.5Na0.5Nb0.92Sb0.08O3 ceramics have been fabricated by a conventional ceramic technique and their dielectric and piezoelectric properties have been studied. Our results show that a small amount of MnO2 (0.5–1.0 mol%) is enough to improve the densification of the ceramics and decrease the sintering temperature of the ceramics. The co-effects of MnO2 doping and Sb-substitution lead to significant improvements in the ferroelectric and piezoelectric properties. The K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping possesses optimum propeties: d 33 = 187 pC/N, k P = 47.2%, ε r = 980, tanδ = 2.71% and T c = 287 °C. Due to high tetragonal-orthorhombic phase transition temperature (T O-T ~ 150 °C), the K0.5Na0.5Nb0.92Sb0.08O3 ceramic with 0.5 mol%MnO2 doping exhibits a good thermal stability of piezoelectric properties.  相似文献   

16.
BaTi4O9 film was prepared on Pt/Ti/SiO2/Si substrate by laser chemical vapor deposition. The microstructure and dielectric properties were investigated. The single-phase BaTi4O9 film with random orientation was obtained. The surface consisted of round and rectangular grains, and the cross-section was columnar microstructure. The deposition rate (R dep) was 135 μm h−1. The dielectric constant (ε r) and loss (tanδ) were 35 and 0.01, respectively, at 1 MHz. With increasing temperature, ε r increased and showed a broad peak around 736 K, which indicated there might be a phase transition.  相似文献   

17.
The Ln2/3Gd1/3TiNbO6 ceramic compositions are prepared through the solid state ceramic route. The compositions are calcined at 1250 °C and sintered in the range 1350–1435 °C. Structural analysis of the materials is done using X-ray diffraction analysis and vibrational spectroscopy. Surface morphology is examined by Scanning Electron Microscopy. Microwave dielectric properties such as dielectric constant (εr), quality factor (Q) and temperature coefficient of resonant frequency (Tf) are measured using cavity resonator method. The compositions have εr in between 46 and 41.8 and Tf in between +52 and +25 ppm/°C. By the substitution of Gd, the Tf is reduced considerably with a slight decrease in dielectric constant. Cerium based composition had additional reflections other than that of aeschynite structure. For Pr, Nd and Sm based systems, solid solutions were formed. UV visible spectrum of the representative composition is recorded and the band gap energy is estimated. Photoluminescence spectra of the samples are recorded and the transitions causing emissions are identified. The materials are suitable for microwave and optoelectronic applications.  相似文献   

18.
Ba5Nb4O15 powders were synthesized by molten-salt method in NaCl–KCl flux at a low temperature of 650–900 °C for 2 h, which is lower than that of the conventional solid-state reaction. This simple process involved mixing of the raw materials and salts in a certain proportion. Subsequent calcination of the mixtures led to Ba5Nb4O15 powders at 650–900 °C. XRD and SEM techniques were used to characterize the phase and morphology of the fabricated Ba5Nb4O15 powders, respectively. After sintering at 1,300 °C for 2 h, the densified Ba5Nb4O15 ceramics with good microwave dielectric properties of εr = 39.2, Q × f approximated as 27,200 GHz and τ f  = 72 ppm/°C have been obtained.  相似文献   

19.
Solid state reaction technique was employed to synthesize Ba(Nb0.2Ti0.8)O3 [BNT], and 0.9Ba(Nb0.2Ti0.8)O3 + 0.1BaZrO3 [BNT + BZ] samples. Sintered pellets were investigated for its dielectric (εr and tanδ) properties in the temperature range 100 K–380 K and in the frequency range of 100 Hz–1 MHz. The variation of εr and tan δ may be attributed to hopping of trapped charge carriers, which resulted in an extra dielectric response in addition to the dipole response. Hysteresis loop measurements were studied in the temperature regime 295 K–423 K. Loop area shrunk with the increase of temperature that may be due to phase transition from ferroelectric to paraelectric state.  相似文献   

20.
Mg2SiO4 (Forsterite) ceramics were synthesized by solid state route. The effect of lithium magnesium zinc borosilicate (LMZBS) glass addition on the densification temperature and microwave dielectric properties of forsterite ceramics was investigated. The crystal structure and microstructure of ceramic–glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.5 wt% LMZBS glass improved densification with ε r = 7.3 and Qxf = 121,200 GHz. Addition of 15 wt% LMZBS glass lowered the sintering temperature to about 950 °C with ε r = 6.75 and Qxf = 30,600 GHz. The reactivity of 15 wt% LMZBS glass added forsterite with silver was also studied. The result shows that forsterite doped with suitable amount of LMZBS glass is a possible material for LTCC and microwave substrate applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号