首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber-Reinforced Aerated Concrete (FRAC) is a novel lightweight aerated concrete that includes internal reinforcement with short polymeric fibers. The autoclaving process is eliminated from the production of FRAC and curing is performed at room temperature. Several instrumented experiments were performed to characterize FRAC blocks for their physical and mechanical properties. This work includes the study of pore-structure at micro-scale and macro-scale; the variations of density and compressive strength within a block; compressive, flexural and tensile properties; impact resistance; and thermal conductivity. Furthermore, the effect of fiber content on the mechanical characteristics of FRAC was studied at three volume fractions and compared to plain Autoclaved Aerated Concrete (AAC). The instrumented experimental results for the highest fiber content FRAC indicated compressive strength of approximately 3 MPa, flexural strength of 0.56 MPa, flexural toughness of more than 25 N m, and thermal conductivity of 0.15 W/K m.  相似文献   

2.
Carbon foams and fibers reinforced carbon composites were prepared using chemical liquid-vaporized infiltration and pitch impregnation. The microstructure and mechanical properties of the composites were investigated. The results showed that the final density of these samples was in a range of 1.34–1.45 g/cm3. The pores in carbon foams were filled with pyrocarbon and pitch carbon. The flexural and tensile strength of the composites increased gradually with increasing the content of carbon fibers, whereas the compressive stress went up to a maximum value of 35.9 MPa at the fiber content of 7%.  相似文献   

3.
Carbon fiber reinforced multilayered (PyC–SiC)n matrix (C/(PyC–SiC)n) composites were prepared by isothermal chemical vapor infiltration. The phase compositions, microstructures and mechanical properties of the composites were investigated. The results show that the multilayered matrix consists of alternate layers of PyC and β-SiC deposited on carbon fibers. The flexural strength and toughness of C/(PyC–SiC)n composites with a density of 1.43 g/cm3 are 204.4 MPa and 3028 kJ/m3 respectively, which are 63.4% and 133.3% higher than those of carbon/carbon composites with a density of 1.75 g/cm3. The enhanced mechanical properties of C/(PyC–SiC)n composites are attributed to the presence of multilayered (PyC–SiC)n matrix. Cracks deflect and propagate at both fiber/matrix and PyC–SiC interfaces resulting in a step-like fracture mode, which is conducive to fracture energy dissipation. These results demonstrate that the C/(PyC–SiC)n composite is a promising structural material with low density and high flexural strength and toughness.  相似文献   

4.
《Composites Part A》2003,34(5):393-401
Oxidized PAN-fiber felt was carbonized to 600, 1000, and 1800 °C, respectively. Different carbon/carbon composites (C/C composites) were prepared from oxidized PAN-fiber felt, the carbonized felts, and resol-type phenol–formaldehyde resin. These composites were then carbonized and graphized at temperatures of between 600 and 2400 °C. The C/C composite made with oxidized PAN-fiber felt showed a strong fiber/matrix bonding, and those developed from the carbonized felt (heat-treatment of 1800 °C) showed a poor fiber/matrix bonding. The graphitized composites reinforced with the oxidized PAN-fiber felt resulted in having a high flexural strength (325 MPa), and the graphitized composites reinforced with the carbonized felt (carbonized at 1800 °C) had a low flexural strength (9 MPa). It was found that the stress-orientation promoted the formation of the anisotropic texture around the fibers as well as between the fibers. This felt may very well be able to provide a low-cost route for producing multidimensional C/C composites.  相似文献   

5.
The toughening effect of the short carbon fibers in the ZrB2–ZrSi2 ceramic composites were investigated, where the ZrB2–ZrSi2 ceramics without carbon fibers were used as the reference. The mechanical properties were evaluated by means of flexural and SENB tests, respectively. The microstructure was characterized by SEM equipped with EDS. The results found that the short carbon fibers were uniformly incorporated in the ZrB2–ZrSi2 matrix and the relative density was about 97.92%. The flexural strength of short carbon fiber-reinforced ZrB2–ZrSi2 composites is 437 MPa; the fracture toughness and the work of fracture are 6.89 MPa m1/2 and 259 J/m2, respectively, which increased significantly in comparing with composites without fibers. The microstructure analysis revealed that the improved fracture toughness could be attributed to the fiber bridging, the fiber–matrix interface debonding and the fiber pullout, which consumed more fracture energy during the fracture process.  相似文献   

6.
Direct tensile behavior of high performance fiber reinforced cementitious composites (HPFRCCs) at high strain rates between 10 s−1 and 30 s−1 was investigated using strain energy frame impact machine (SEFIM) built by authors. Six series of HPFRCC combining three variables including two types of fiber, hooked (H) and twisted (T) steel fiber, two fiber volume contents, 1% and 1.5%, and two matrix strengths, 56 MPa and 81 MPa, were investigated. The influence of these three variables on the high strain rate effects on the direct tensile behavior of HPFRCCs was analyzed based on the test results. All series of HPFRCCs showed strongly sensitive tensile behavior at high strain rates, i.e., much higher post cracking strength, strain capacity, and energy absorption capacity at high strain rates than at static rate. However, the enhancement was different according to the types of fiber, fiber volume content and matrix strength: HPFRCCs with T-fibers produced higher impact resistance than those with H-fibers; and matrix strength was more influential, than fiber contents, for the high strain rate sensitivity. In addition, an attempt to predict the dynamic increase factor (DIF) of post cracking strength for HPFRCCs considering the influences of fiber type and matrix strength was made.  相似文献   

7.
This paper reports the results of a study conducted to investigate the effect of low volume content of steel fiber on the slump, density, compressive strength under different curing conditions, splitting tensile strength, flexural strength and modulus of elasticity of a grade 35 oil palm shell (OPS) lightweight concrete mixture. The results indicate that an increase in steel fiber decreased the workability and increased the density. All the mechanical properties except the modulus of elasticity (E) improved significantly. The 28 day compressive strength of steel fiber OPS lightweight concrete in continuously moist curing was in the range of 41–45 MPa. The splitting tensile/compressive and the flexural/compressive strength ratio for plain OPS concrete are comparable with artificial lightweight aggregate. The (E) value measured in this study was about 15.5 GPa on average for all mixes, which is higher than previous studies and is in the range of normal weight concrete. Steel fiber can be used as an alternative material to reduce the sensitivity of OPS concrete in poor curing environments.  相似文献   

8.
This study focuses on the measurement of the ultimate flexural and tensile strength of GUSMRC, a new class of green ultra-high performance fiber reinforced cementitious composites (GUHPFRCCs) in which 75% of the volume contains ultrafine palm oil fuel ash (UPOFA). This green concrete is currently under development at the Universiti Sains Malaysia (GUSMRC). The main objective of this study is to investigate the potential of UPOFA as a partial binder replacement for the ultimate flexural and uniaxial tensile strength of GUSMRC mixtures. Results showed that UPOFA enhances the flexural and uniaxial tensile responses of fresh UHPFRCCs. The highest flexural and uniaxial tensile strength values at the 50% replacement level after 28 days were at 42.38 MPa and 13.35 MPa, respectively, indicating the potential of utilizing UPOFA as an efficient pozzolanic mineral admixture for the production of GUSMRC with superior engineering properties.  相似文献   

9.
This work aims at studying the relationships between strength and toughness of tantalum carbide (TaC) ceramics, a refractory ceramic used in aerospace and energy production sectors. The effect of different secondary phases was explored: (I) the addition of a transition metal silicide with suited thermo-elastic properties, TaSi2, (II) the addition of SiC particles, platelets or fibers, and (III) chopped carbon fibers. Microstructural analyses, performed by scanning and transmission electron microscopy, were essential in revealing at nanoscale level the morphological changes occurred during sintering in the reinforcing phase and its interaction with matrix and sintering additive. Mechanisms of reinforcement evolution are suggested accordingly. Fracture toughness and flexural strength were measured and the values were compared to unreinforced materials and discussed in agreement to the microstructural features. Strength approaching 1 GPa was obtained upon addition of SiC particles, but residual thermal stresses prevented from notable increase of toughness, which fluctuated around 4 MPa √m. A good compromise between strength and toughness was found for addition of Hi-Nicalon SiC fiber, 550 MPa and 5.3 MPa √m, respectively. More refractory SiC fibers resulted not effective, owing to the rising of tensional state in the matrix. On the other hand, TaSi2 led to a toughness of 4.7 MPa √m and strength around 680 MPa. Conversely, carbon fiber led to poor toughness due to unfavorable combination of coefficient of thermal expansion with the matrix.  相似文献   

10.
This study assesses the mechanical performance of metakaolin-based geopolymers reinforced with refractory aluminosilicate particles and fibers, after exposure to elevated temperatures. Compressive strength, shrinkage and flexural strength data reveal that the inclusion of refractory particles, both with and without additional refractory fibers, promotes improved post-exposure compressive and flexural strengths compared with samples without reinforcement. Specimens exposed to temperatures between 600 °C and 1000 °C exhibited reduced shrinkage with the inclusion of higher contents of particles and fibers, while retaining good mechanical strength. This behavior is attributed to the cracking control achieved in these materials, which contributes to the enhancement of their volumetric stability through the combined effect of a strong interaction between reinforcing particles and the matrix leading to crack deflection, and the potential densification of the matrix–fiber interface at increased exposure temperatures, rising the stiffness of the final composite. These results indicate that metakaolin-based geopolymer composites, if designed with the correct compatibility between matrix and filler characteristics, can act as an inexpensive castable composite refractory.  相似文献   

11.
Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20 wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m1/2) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications.  相似文献   

12.
In the present work, dense β-TCP ceramics were fabricated by gel-casting method. The effects of the solids loading on the rheological behavior of β-TCP slurries were investigated. When the concentration of the slurries was increased from 40 to 60 vol.%, the compressive strength of green pieces was raised from 12.4 ± 1.1 to 41.2 ± 2.3 MPa, and flexural strength from 9.4 ± 0.4 to 16.3 ± 0.9 MPa. The density of the final specimens was 97.4% of the theoretical density after pressureless sintering at 1100 °C. The compressive strength, flexural strength, elasticity modulus and the fracture toughness of the sintered pieces were 291 ± 15 MPa, 93.0 ± 8.7 Mpa, 72.4 ± 7.5 GPa and 0.92 ±0.04 Mpa·m0.5 respectively. SEM images show a compact and uniform microstructure; XRD and FTIR determined the phase and the radical before and after sintering.  相似文献   

13.
Aramid fibers reinforced silica aerogel composites (AF/aerogels) for thermal insulation were prepared successfully under ambient pressure drying. The microstructure showed that the aramid fibers were inlaid in the aerogel matrix, acting as the supporting skeletons, to strengthen the aerogel matrix. FTIR revealed AF/aerogels was physical combination between aramid fibers and aerogel matrix without chemical bonds. The as prepared AF/aerogels possessed extremely low thermal conductivity of 0.0227 ± 0.0007 W m−1 K−1 with the fiber content ranging from 1.5% to 6.6%. Due to the softness, low density and remarkable mechanical strength of aramid fibers and the layered structure of the fiber distribution, the AF/aerogels presented nice elasticity and flexibility. TG–DSC indicated the thermal stability reaching approximately 290 °C, can meet the general usage conditions, which was mainly depended on the pure silica aerogels. From mentioned above, AF/aerogels present huge application prospects in heat preservation field, especially in piping insulation.  相似文献   

14.
The flexural strength and ductility properties of cementitious composites (mortar) under high temperature may be significantly improved by incorporating different types of fibers. In this study, four different types of fibers are added to cement mortars with the aim to investigate their mechanical contributions to mortars under high temperature, comparatively. Polypropylene (PP), carbon (CF), glass (GF) and polyvinyl alcohol (PVA) fibers are chosen for research. These fibers are added into mortars in five different ratios (0.0%, 0.5%, 1.0%, 1.50% and 2.0%) by volume. The mortars are subjected to the following temperatures: 21 °C (normal conditions), 100 °C (oven dry), 450 °C and 650 °C. The mechanical properties investigated are flexural strength, deflection and compressive strength of the cement mortars. In addition, thin sections of mortars are investigated to obtain changes in mortar because of high temperature. It is concluded that all fiber types contribute to the flexural strengths of mortars under high temperature. However, this contribution decreases with an increase in temperature. The samples with PVA show the best flexural performance (75–150%) under high temperature. CF which does not melt under high temperature also gives high flexural strength (11–85%). The compressive strengths of the mortars reduce under high temperature or with fiber addition. The highest increase in flexural strength and the lowest decrease in compressive strength is at 0.5–1.5% for CF if all temperature conditions are taken into consideration. The optimum fiber addition ratios of the samples containing PP and GF are 0.5% by volume. And for PVA, it is between 0.5% and 1.5% by volume.  相似文献   

15.
Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m2). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m2; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix.  相似文献   

16.
《Composites Part B》2007,38(2):152-158
The mechanical properties of newly developed aspen fiber–polypropylene composites (APC) were experimentally explored and numerically predicted at the temperatures and humidity that are typical for domestic housing applications. The mechanical properties of APCs with five different fiber-loadings were evaluated at the room temperature, 4 °C, and 40 °C. Environmental effects on the mechanical properties of APCS were experimentally quantified after conditioning the APCs with two different fiber-loadings in the following temperature and humidity for over 7000 h: (1) hot/dry at 40 °C and 30% relative humidity (RH), (2) hot/wet at 40 °C and 82% RH, (3) cold/dry at 4 °C and 30% RH, and (4) cold/wet at 4 °C and 82% RH. The tensile moduli, flexural moduli, and the flexural strength increased as the woodfiber content increased in the composites. However, the tensile strength decreased as the fiber content increased. The tensile strength was shown to slightly improve with an addition of a coupling agent between the aspen fibers and polypropylene. The simple empirical micromechanics Halpin–Tsai model for randomly distributed short fiber reinforced composites was employed to predict the homogenized elastic moduli of APC, by optimizing the interfacial model parameter. Scanning electron microscopy (SEM) micrographs confirmed that an addition of the adhesion promoter maleated anhydride polypropylene (MAPP) between the aspen fibers and polymeric matrix improved the interfacial bonding.  相似文献   

17.
Silicon carbide (SiC) interphase was introduced by chemical vapor deposition (CVD) process to prevent carbon fiber degradation and improve fiber–matrix interface bonding of C/ZrC composite prepared via precursor infiltration and pyrolysis (PIP) process. Moderate thickness of SiC interphase in fiber bundles could increase the density of the composite, but when the thickness of SiC interphase was over 0.5 μm, more close pores formed and the density of the composite decreased. The SiC interphase could protect carbon fiber effectively from carbo-thermal reduction, but could not enhance the mechanical properties of C/ZrC composite. The flexural strength and fracture toughness of C/ZrC composites with 0.05 μm thickness SiC layer were 252 MPa and 13.6 MPa m1/2, and for those with 0.5 μm thickness SiC layer 240 MPa and 12.8 MPa m1/2, both close to the value of the composite without SiC interphase (254 MPa and 14.5 MPa m1/2), while those with 0.7 μm thickness SiC layer were only 191 MPa and 10.8 MPa m1/2, respectively. Moderate content of SiC interphase could improve the ablation property of C/ZrC composites; however excessive content of SiC interphase would decrease the ablation property.  相似文献   

18.
For investigating the effect of fiber content on the material and interfacial bond properties of ultra high performance fiber reinforced concrete (UHPFRC), four different volume ratios of micro steel fibers (Vf = 1%, 2%, 3%, and 4%) were used within an identical mortar matrix. Test results showed that 3% steel fiber by volume yielded the best performance in terms of compressive strength, elastic modulus, shrinkage behavior, and interfacial bond strength. These parameters improved as the fiber content was increased up to 3 vol.%. Flexural behaviors such as flexural strength, deflection, and crack mouth opening displacement at peak load had pseudo-linear relationships with the fiber content. Through inverse analysis, it was shown that fracture parameters including cohesive stress and fracture energy are significantly influenced by the fiber content: higher cohesive stress and fracture energy were achieved with higher fiber content. The analytical models for the ascending branch of bond stress-slip response suggested in the literature were considered for UHPFRC, and appropriate parameters were derived from the present test data.  相似文献   

19.
Lightweight carbon-bonded carbon fiber (CBCF) composites were fabricated with chopped carbon fibers and dilute phenolic resin solution by pressure filtration, followed by carbonization at 1000 °C in argon. The as-prepared CBCF composites had a homogenous fiber network distribution in xy direction and quasi-layered structure in z direction. The pyrolytic carbon derived from phenolic resin was mainly accumulated at the intersections and surfaces of chopped carbon fibers. The composites possessed compressive strengths ranged from 0.93–6.63 MPa in xy direction to 0.30–2.01 MPa in z direction with a density of 0.162–0.381 g cm 3. The thermal conductivity increased from 0.314–0.505 to 0.139–0.368 Wm 1 K 1 in xy and z directions, respectively. The experimental results indicate that the CBCF composites prepared by this technique can significantly contribute to improve the thermal insulation and mechanical properties at high temperature.  相似文献   

20.
In the last decade the steel fiber reinforced self-compacting concrete (SFRSCC) has been used in several partially and fully structural applications. This study investigates how the inclusion of steel fibers affects the properties of SFRSCC. For this purpose, an extensive experimental program including different cement contents of 400, 450 and 500 kg/m3, two maximum aggregate sizes of 10 and 20 mm along with steel fiber volume fractions of 0%, 0.38%, 0.64% and 1% was conducted. The water/cement ratio was kept constant at 0.45 for all the mixes studied. Mechanical properties were tested for compressive, splitting tensile and flexural strengths and modulus of elasticity. The results showed that mixture characteristics and volume fraction of steel fibers can significantly affect these major properties. Furthermore, this study represents extensive comparisons using database that have been gathered from a wide variety of international sources reported by many researchers and data obtained experimentally, which came up with about some discrepancies in the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号