首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basement of the Pannonian (Carpathian) basin is represented by Paleozoic metamorphic and Mesozoic dolomite and limestone formations. The Tertiary basin gradually subsided during the Alpine orogeny down to 6000 m and was filled by elastic sediments with several water horizons.A heat flow of 2.0 to 3.4 μcal/cm2s gives temperature gradients between 45 and 70 °C/km in the basin. At 2000 m depth the virgin rock temperature is between 110 and 150°C. 80 geothermal wells about 2000 m deep have shown the great geothermal potential of the basin.The main hot water reservoir is the Upper Pliocene (Pannonian) sandstone formation. Hot water is produced by wells from the blanket or sheet sand and sandstone, intercalated frequently by siltstone. Between a 100–300 m interval, 3 to 8 permeable layers are exploited resulting in 1–3 m3/min hot water at 80–99°C temperature.Wells at present are overflowing with shut-in pressures of 3–5 atm.The Pannonian basin is a conduction-dominated reservoir. Convection systems are negligible, hot igneous systems do not exist. The assessment of geothermal resources revealed that the content of the water-bearing rocks down to 3000 m amounts to 12,600 × 1018cal. In the Tertiary sediments 10,560 × 1018cal and in the Upper Pannonian, 1938 × 1018cal are stored. In the Upper Pannonian geothermal reservoir, below 1000 m, where the virgin rock temperature is between 70 and 140°C, the stored heat is 768 × 108cal. A 1018 cal is equivalent to the combustion heat of 100 million tons of oil. The amount of recoverable geothermal energy from 768 × 108cal is 7.42 × 1018cal, i.e. about 10,000 MW century, not considering reinjection.At present the Pannonian geothermal reservoir stores the greatest amount of identified heat which can be mobilized and used. Hungary has 496 geothermal wells with a nominal capacity of 428 m3/min, producing 1342 MW heat. 147 wells have an outflow temperature of more than 60°C producing 190 m3/min, that is, 845 MW. In 1974 290 MWyear of geothermal energy was utilized in agriculture, district heating and industry.  相似文献   

2.
The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the economics of geothermal energy by producing supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require the drilling of wells and the sampling of fluids and rocks to depths of 3.5–5 km, and at temperatures of 450–600 °C. The IDDP plans to drill and test a series of such deep boreholes in the Krafla, Nesjavellir and Reykjanes geothermal fields in Iceland. Beneath these three developed high-temperature systems frequent seismic activity continues below 5 km, indicating that, even at supercritical temperatures, the rocks are brittle and therefore likely to be permeable, even where the temperature is assumed to exceed 550–650 °C. Temperature gradients are greater and fluid salinities smaller at Nesjavellir and Krafla than at Reykjanes. However, an active drilling program is underway at Reykjanes to expand the existing generating capacity and the field operator has offered to make available one of a number of 2.5 km deep wells to be the first to be deepened to 5 km by the IDDP. In addition to its potential economic significance, drilling deep at this location, on the landward extension of the Mid-Atlantic Ridge, is of great interest to the international science community. This paper examines the prospect of producing geothermal fluids from deep wells drilled into a reservoir at supercritical temperatures and pressures. Since fluids drawn from a depth of 4000–5000 m may prove to be chemically hostile, the wellbore and casing must be protected while the fluid properties are being evaluated. This will be achieved by extracting the fluids through a narrow retrievable liner called the “pipe”. Modelling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450 °C. A deep well producing 0.67 m3/s steam (2400 m3/h) from a reservoir with a temperature significantly above 450 °C could, under favourable conditions, yield enough high-enthalpy steam to generate 40–50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from a conventional geothermal well in Iceland. The aim of the IDDP is to determine whether utilization of heat from such an unconventional geothermal resource at supercritical conditions will lead to increased productivity of wells at a competitive cost. If the IDDP is an economic success, this same approach could be applied in other high-temperature volcanic geothermal systems elsewhere, an important step in enhancing the geothermal industry worldwide.  相似文献   

3.
《Geothermics》2001,30(1):111-132
Equilibrium temperatures based on log data acquired during drilling stops in the Los Azufres geothermal field were used to study the relationship between temperature, depth and conductive heat flow that differentiate production from non-production areas. Temperature and thermal conductivity data from 62 geothermal wells were analyzed, displaying temperature–depth, gradient–depth, and ternary temperature–gradient–depth plots. In the ternary plot, the production wells of Los Azufres are located near the temperature vertex, where normalized temperatures are over 0.50 units, or where the temperature gradient is over 165°C/km. In addition, the temperature data were used to estimate the depth at which 600°C could be reached (5–9 km) and the regional background conductive heat flow (≈ 106 mW/m2). Estimates are also given for the conductive heat flow associated with the conductive cooling of an intrusive body (≈ 295 mW/m2), and the conductive heat flow component in low-permeability blocks inside the reservoir associated with convection in limiting open faults (from 69 to 667 mW/m2). The method applied in this study may be useful to interpret data from new geothermal areas still under exploration by comparing with the results obtained from Los Azufres.  相似文献   

4.
Geothermal energy from hot dry rock (HDR), considered an almost inexhaustible source of “green” energy, was first developed and tested in the 1970s, leading to installations in America, Japan, Britain, France and other countries. In the present work, a liquating rock mass at a depth of 5-15 km in the Tibet Yangbajing region in China was subjected to detailed analysis. The temperature distribution of the geothermal field in the region was determined by the finite element method. The results estimate that the HDR geothermal resource of the Yangbajing region is 5.4 × 109 MW a, representing a huge potential source of HDR geothermal energy for China. Based on detailed research into the continental dynamics of the environment forming the HDR geothermal field of Tibet, along with the tectonic characteristics of the southern slope of Tanggula Mountain and the Dangxiong-Yangbajing Basin, and the magnitude and orientation of the in situ stresses in the region, the design of an arrangement for extracting these HDR geothermal resources is proposed: taking the fault zone nearest the high-temperature liquating rock region as the location of an artificial reservoir, a vertical injection well could be drilled at a low point on the downdip side of the fault, and two dipping production wells drilled higher up. In this way, an artificial reservoir 3 × 1011 m3 in volume would be created: 360 times the volume of the HDR geothermal reservoir in Cornwall, UK, which uses hydrofracturing. An investigation of the reservoir features, including seepage analysis of the heat exchange area, project implementation and investment analysis, indicates that a 104 MW capacity power station with a projected operating life of approximately 100 years could be constructed. An analysis of a geothermal extraction system comprising one injection well and two production wells suggest that a power station of 1000 MW installed capacity could be constructed initially to provide electricity production of 8.64 × 109 kWh per year.  相似文献   

5.
The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 °C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 °C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW.  相似文献   

6.
To estimate available geothermal energy and to construct temperature at depth maps in Korea, various geothermal data have been used. Those include 1560 thermal property data such as thermal conductivity, specific heat and density, 353 heat flow data, 54 surface temperature data, and 180 heat production data. In Korea, subsurface temperature ranges from 23.9 °C to 47.9 °C at a depth of 1 km, from 34.2 °C to 79.7 °C at 2 km, from 44.2 °C to 110.9 °C at 3 km, from 53.8 °C to 141.5 °C at 4 km, and from 63.1 °C to 171.6 °C at 5 km. The total available subsurface geothermal energy in Korea is 4.25 × 1021 J from surface to a depth of 1 km, 1.67 × 1022 J to 2 km, 3.72 × 1022 J to 3 km, 6.52 × 1022 J to 4 km, and 1.01 × 1023 J to 5 km. In particular, the southeastern part of Korea shows high temperatures at depths and so does high geothermal energy. If only 2% of geothermal resource from surface to a depth of 5 km is developed in Korea, energy from geothermal resources would be equivalent to about 200 times annual consumption of primary energy (~2.33 × 108 TOE) in Korea in 2006.  相似文献   

7.
Forecast and evaluation of hot dry rock geothermal resource in China   总被引:1,自引:0,他引:1  
Utilizing information from plate tectonics characteristics, volcanic activities, and geothermal anomaly, this paper identifies areas where hot dry rock (HDR) may exist as potential geothermal resource in China. Further investigations are also carried out in the paper based on results from regional tectonics, volcanic geology and lithology, as well as data from geothermal displays, geochemistry, geophysics, and shallow borehole temperature measurements. The study reveals several promising areas of HDR geothermal resource in China, including Tengchong of Yunnan province, Qiongbei of Hainan province, Changbaishan of Jilin province, Wudalianchi of Heilongjiang province, and the Southern Tibet area. A 3D static heat conduction model was developed to study the underground temperature gradient characteristics of the Rehai geothermal field in Tengchong and the Yangbajing geothermal field in Tibet. The model adopted is a geological block 10 km deep from the ground surface and 50 km wide in each of the horizontal directions (2500 km2 area). The numerical simulation results in evaluations on the quantities of the HDR geothermal resource in Rehai and Yangbajing geothermal fields. The paper shows that there is abundant HDR geothermal resource with large exploitation value in China. If developed with a power capacity of 1×108 kW, the Rehai and Yangbajing fields along would be able to generate electricity for 1560 years.  相似文献   

8.
《Geothermics》2006,35(1):26-43
Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that ∼7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the valley bounding Stillwater Range Front Fault, from which the geothermal fluids are produced. Using a one-dimensional flow model, a lower limit fluid flow rate up through the fault of 7 mm/yr is estimated, corresponding to a mantle 3He flux of ∼104 atoms m−2 s−1.A comparison between the fluids from Dixie Valley springs, fumaroles, and wells and the fluids produced from the geothermal field reveals a mixing trend between the geothermal fluid and younger, cooler groundwaters. The exceptions are those features that either emanate directly from the Stillwater fault or wells that penetrate and extract fluids from the fault zone, all of which have helium isotopic compositions that are indistinguishable from the geothermal production fluids. The results of our study indicate that the Stillwater Range Front Fault system must act as a permeable conduit that can sustain high vertical fluid flow rates from deep within the crust and crust-mantle boundary and that high permeability may exist along most of its length. This suggests that the geothermal potential of the Stillwater fault may be significantly greater than the 6–8 km long system presently under production. Since all the numerous springs, wells, and fumaroles in the valley also contain a fluid component that is indistinguishable from the geothermal/Stillwater fault fluid, the potential for an additional deeper and more pervasive geothermal system also exists and should be further evaluated. Furthermore, we suggest that elevated helium isotope compositions in regions with little or no recent magmatism are an indicator of the deep crustal permeability that is required to drive and sustain extensional geothermal systems.  相似文献   

9.
Clayware membrane amalgamated with 20% montmorillonite (M-20), acts as an excellent cost effective proton exchange membrane (PEM) for the application in field-scale microbial fuel cells (MFCs). In this investigation, M-20 membrane was pre-treated by acid (M-A), neutral water (M-N) and alkali (M-B), followed by the determination of the membrane properties to access their applicability in MFCs. With alkali treatment of M-20 membrane, maximum proton mass transfer coefficient of 6 × 10−6 cm s−1 was obtained, which was nearly five times higher than M-A (1.15 × 10−6 cm s−1) and four times higher than the control membrane, M-N. Proton conductivity was also found to be maximum for M-B (17.9 × 10−3 S cm−1), which was four times higher than both M-N (4.4 × 10−3 S cm−1) and M-A (4.6 × 10−3 S cm−1). Oxygen mass transfer coefficient was found to be minimum for M-B (4.02 × 10−5 cm s−1), which was considerably lesser than that observed for M-N (16.2 × 10−5 cm s−1) and M-A (13.8 × 10−5 cm s−1). Cation transport number of M-B (0.15 ± 0.01) was found to be two folds lower than M-N, demonstrating M-B is more selective towards proton transport compared to other cations. The MFC-B with M-B as PEM performed superior as compared with other MFCs, demonstrating coulombic efficiency (CE) of 10.2%, chemical oxygen demand (COD) removal efficiency of 88% and power density of 83.5 mW m−2. On the other hand, MFCs using M-A and M-N as PEM, demonstrated mediocre performance with CE of 6% and 7.6%, COD removal efficiency of 80% and 83% and power density of 40.4 ± 6.2 mW m−2 and 64.0 ± 5.8 mW m−2, respectively. Hence, alkali treatment of clayware ceramic membrane elucidated its appropriateness for proliferating the efficacy of MFCs and these are recommended for scaling up of MFCs.  相似文献   

10.
《Geothermics》1998,27(3):271-294
The Tanggu geothermal system is an extensive, highly permeable, horizontal sandstone reservoir, situated within the North China Sedimentary Basin. Twenty-three successful production wells, yielding water with an average temperature of about 70°C, have been drilled into this reservoir since 1987, distributed over an area of some 330 km2. The hot water is mostly used for space heating. In 1995 the annual production exceeded 5 million tons. Hot water extraction has caused the water level to drop to a depth of 80 m in the production wells, and it continues to decline at a rate of 3–4m per year. This has raised the question as to whether the reservoir may be overexploited. The main objective of a reservoir evaluation carried out in 1996 was to estimate the long-term production potential of the Tanggu reservoir. Two simple models were developed for this purpose. The potential is determined by specifying a maximum allowable pump setting depth of 150m. On this basis the potential of the Tanggu reservoir is estimated to be about 10 million tons per year, for the next ten years. A comprehensive reservoir management program must be implemented in Tanggu. The first priority of such a program should be to improve the energy efficiency of space heating in the district, which should result in about 50% reduction in hot water consumption. Another management option is reinjection, which would counteract the water level draw-down.  相似文献   

11.
Interest in geothermal energy originated in Iran when James R. McNitt, a United Nations geothermal expert, visited the country in December 1974. In 1975, a contract among the Ministry of Energy, ENEL (Entes Nazionale per L’Energia Elettrica) of Italy and TB (Tehran Berkeley) of Iran was signed for geothermal exploration in the north-western part of Iran. In 1983, the result of investigations defined Sabalan, Damavand, Khoy-Maku and Sahand regions as four prospected geothermal sites in north-western Iran.From 1996 to 1999, a countrywide geothermal energy resource exploration project was carried out by Renewable Energy Organization of Iran (SUNA) and 10 more potential areas were indicated additionally.Geothermal potential site selection using Geographic Information System (GIS) was carried out in Kyushu University in 2007. The results indicated 8.8% of Iran as prospected geothermal areas in 18 fields.Sabalan as a first priority of geothermal potential regions was selected for detailed explorations. Since 1995, surface exploration and feasibility studies have been carried out and five promising areas were defined. Among those prospective areas, Northwest Sabalan geothermal filed was defined for detailed exploration to justify exploration drilling and to estimate the reservoir characteristics and capacity.From 2002 to 2004, three deep exploration wells were drilled for evaluation of subsurface geological conditions, geothermal reservoir assessment and response simulation. Two of the wells were successful and a maximum temperature of 240 °C at a depth of 3197 m was recorded. As a result of the reservoir simulation, a 55-MW power plant is projected to be installed in the Sabalan field as a first in geothermal power generation. To supply the required steam for the geothermal power plant (GPP) 17 deep production and reinjection wells are planned to be drilled this year.  相似文献   

12.
Low-cost biopolymer chitosan has received considerable attention in the field of anion exchange membranes (AEMs) because it can be easily quaternized and avoids the carcinogenic chloromethylation step. Simultaneously increasing the ionic conductivity and improving mechanical properties of quaternized chitosan (QCS) is key for its high-performance application. In this study, new composite AEMs consisting of QCS and functionalized carbon nanotubes (CNTs) were prepared. CNTs were coated with a thick silica layer onto which high-density quaternary ammonium groups were then grafted. The insulator silica coating effectively prohibits electron conduction among nanotubes and the grafted –NR3+ provides new OH conductive sites. Incorporating 5 wt% functionalized CNTs into the matrix enhanced ionic conductivity to 42.7 mS cm−1 (80 °C) which was approximately 2 times higher than that of pure QCS. The effective dispersion of CNTs and appropriate interfacial bonding between nanofiller and QCS improved the mechanical properties of AEMs, including both the strength and toughness of the composite membranes. An alkaline direct methanol fuel cell equipped with the composite membrane (5% functionalized CNTs loading) produced an maximum power density of 80.8 mW cm−2 (60 °C), which was 57% higher than that of pure QCS (51.5 mW cm−2). This study broadens the application of natural polymers and provides a new way to design and fabricate composite AEMs with both improved mechanical properties and electrochemical performance.  相似文献   

13.
This study assessed the feasibility of vanadium pentoxide (V2O5) as a novel cathode catalyst material in air-cathode single chamber microbial fuel cells (SCMFCs). The V2O5 nanorod catalyst was synthesized using a hydrothermal method. MFCs with different cathode catalyst loadings were studied. Cyclic voltammetry (CV) was used to examine the electrochemical behavior of the catalysts in the MFCs. The V2O5 cathode catalyst constructed with a double loading MFC exhibited the highest maximum power density of 1073 ± 18 mW m−2 (OCP; 691±4 mV) compared with 447 ± 12 mW m−2 (OCP; 594 ± 5 mV) and 936 ± 15 mW m−2 (OCP; 647±5 mV) for the single loading MFC and triple loading MFC, respectively. The power density of MFC with double loaded V2O5 is comparable to the traditional Pt/C cathode (2067 ± 25 mW m−2, OCP; 821 ± 4 mV), which covers up to 55% of the performance of Pt/C. This finding highlights the potential of the V2O5 cathode as an inexpensive catalyst material for MFCs that may have commercial applications.  相似文献   

14.
A three dimensional numerical model of the northwest (NW) Sabalan geothermal system was developed on the basis of the designed conceptual model from available field data. A numerical model of the reservoir was expressed with a grid system of a rectangular prism of 12 km × 8 km with 4.6 km height, giving a total area of 96 km2. The model has 14 horizontal layers ranging in thickness between 100 m to 1000 m extending from a maximum of 3600 to −1000 m a.s.l. Fifteen rock types were used in the model to assign different horizontal permeabilities from 5.0 × 10−18 to 4.0 × 10−13 m2 based on the conceptual model.Natural state modeling of the reservoir was performed, and the results indicated good agreements with measured temperature and pressure in wells. Numerical simulations were conducted for predicting reservoir performances by allocating production and reinjection wells at specified locations. Three different exploitation scenarios were examined for sustainability of reservoir for the next 30 years. Effects of reinjection location and required number of makeup wells to maintain the specified fluid production were evaluated. The results showed that reinjecting at Site B, immediate adjacent to production zone, is most effective for pressure maintenance of the system.On the base of existing data and assumptions the reservoir can sustain producing fluid equivalent to 50 MWe of electricity for more than 30 years. The reservoir can produce the maximum amount of fluids equivalent to 90-100 MWe for only 5 years, but the production capacity decreases to 50 MWe after 20 years of operation because of pressure and enthalpy drop. The reservoir can sustain 50 MWe over 100 years that can be defined as a sustainable production level of the field.  相似文献   

15.
While porous metal-supported solid fuel oxide cells (PMS-SOFCs) have the potential to decrease the cost and increase the start-up speed of power units, the available fabrication processes remain too cumbersome for industrial production. In this study, we prepared bulk-like strontium and magnesium-doped lanthanum gallate (LSGM) coatings using atmospheric plasma spraying (APS) at an increased particle temperature. The large equiaxed grains inside the coatings indicated the epitaxial growth of the splat interfaces and improvement in the coating quality. With increased particle temperature, the conductivity of dense LSGM coatings directly deposited by APS was comparable to that of the bulk material, and cell performance was also significantly enhanced. The maximum power density of the PMS-SOFC at 700 °C was 831 mW cm−2 and 596 mW cm−2 when high and low particle temperatures were used, respectively. These results indicated that the quality of the coating was improved by increasing the in-flight particle temperature.  相似文献   

16.
This paper reports a novel process for simultaneous power generation and green treatment of plastic waste by a solid oxide fuel cell (SOFC) integrated with pyrolysis-gasification processes. With an electrolyte-supported configuration, the SOFC delivers a power output of 71 mW cm−2 at 800 °C, which is improved to 280 mW cm−2 after applying reforming catalyst. The microstructures and properties of the reforming catalyst before and after operation, the components of the pyrolysis products of plastic waste, and the mechanism and effect of the reforming catalyst to the SOFC are analysed and discussed in detail. In addition, carbon nanotubes are observed in the catalytic pyrolysis of plastic waste, suggesting it is also a potential technology for electricity-carbon nanotube cogeneration. This work demonstrates the feasibility of SOFCs for electricity-carbon nanotube cogeneration and green treatments of municipal solid wastes simultaneously.  相似文献   

17.
《Geothermics》2002,31(3):381-406
Following on from surface exploration surveys performed during the 1970s and early 1980s, exploration drilling was carried out in the Tendaho Rift, in Central Afar (Ethiopia), from October 1993 to June 1995. Three deep and one shallow well were drilled in the central part of the Northern Tendaho Rift to verify the existence of a geothermal reservoir and its possible utilisation for electric power generation. The project was jointly financed by the Ethiopian Ministry of Mines and Energy and the Italian Ministry for Foreign Affairs. Project activities were performed by the Ethiopian Institute of Geological Surveys and Aquater SpA. The main reservoir engineering data discussed in this paper were collected during drilling and testing of the above four wells, three of which are located inside the Dubti Cotton Plantation, in which a promising hydrothermal area was identified by surface exploration surveys. Drilling confirmed the existence of a liquid-dominated shallow reservoir inside the Dubti Plantation, characterised by a boiling-point-for-depth temperature distribution down to about 500 m depth. The main permeable zones in the Sedimentary Sequence, which is made up of lacustrine deposits, are located in correspondence to basalt lava flow interlayerings, or at the contact between volcanic and sedimentary rocks. At depth, the basaltic lava flows that characterise the Afar Stratoid Series seem to have low permeability, with the exception of fractured zones associated with sub-vertical faults. Two different upflows of geothermal fluids have been inferred: one flow connected to the Dubti fault feeds the shallow reservoir crossed by wells TD-2 and TD-4, where a maximum temperature of 245 °C was recorded; the second flow seems to be connected with a fault located east of well TD-1, where the maximum recorded temperature was 270 °C. A schematic conceptual model of the Dubti hydrothermal area, as derived from reservoir engineering studies integrated with geological, geophysical and geochemical data, has been tested by numerical simulation, using the TOUGH2/EWASG code. Preliminary simulations, using a simple 3-D numerical model of the Dubti fault area, showed that measured temperature and pressure distribution, as well as evaluated non-condensable gas pressure at reservoir conditions, are compatible with the rise of geothermal fluid, at about 290 °C, along the sub-vertical Dubti fault from beneath the surface manifestations DB1, DB2 and DB3 located at the south-eastern end of the fault. According to the proven shallow field potential, development of this field could meet the predicted electricity requirements of Central Afar until the year 2015.  相似文献   

18.
The development of large surface-area and high conductivity electrode is a prerequisite for the construction of high-performance microbial fuel cells. Herein, we report an innovative approach to the fabrication of such high-performance electrodes via the welding assembly of 3D interconnected carbon nanotubes (CNTs) on a carbon-fiber (CF) paper electrode. The minimized interfacial ohmic loss between CNTs and the CF scaffold endowed the microbial fuel cells with the welding-assembled CNT-CF electrodes excellent electrochemical properties with the maximum power density of 2015.6 mW m−2, 10.0 times higher than that obtained with the untreated CP/CNT (499.8 mW m−2) carbon paper anode. As compared to the conventional chemical vapor deposition (CVD) growth technique for fabricating CNT- CF electrodes, this welding assembly approach is more versatile and much easier for up-scaling; on this basis, our work may pave a new avenue to the large-scale production of high-performance microbial fuel cells.  相似文献   

19.
A parametric study was carried out to investigate the effect of fuel concentration (0.5 M–3.0 M), operating temperature (ambient temperature to 85 °C), flow rate of ethanol (0.5–5.0 mL min−1) and air (100–600 mL min−1) on the direct ethanol fuel cell (DEFC) performance. The operations were conducted in three operational modes, namely, passive, semi passive, and active modes, and power generation were measured. Ethanol crossover was indicated by the carbon dioxide (CO2) concentration present at the cathode outlet and measured by using a CO2 analyzer. Results indicated that DEFC performance increased with the increase of ethanol concentration, and ethanol and oxidant flow rate increased with temperature until DEFC reaches the optimum conditions, i.e., concentration and flow rate. Meanwhile, the DEFC performance significantly and proportionally increased with operation temperature and reached values of up to 8.70 mW cm−2 and 85 °C at stable conditions. Furthermore, fuel crossover, that is, ethanol flux, increased in proportion to the ethanol concentration, i.e., 3.71 × 10−4 g m−2 s−1 and 8.79 × 10−4 g m−2 s−1 for 0.5 M and 3.0 M ethanol concentration, respectively. At different modes of operation, the active DEFC system exhibited the highest performance, followed by the semi passive and passive DEFC system. These results indicated that optimizing ethanol, oxidant flow rate and temperature would enhance the mass transport in anodes and cathodes, and hence improve the electrochemical reactions and DEFC performance.  相似文献   

20.
Temperature evaluation of the Bugok geothermal system, South Korea   总被引:1,自引:0,他引:1  
Using a variety of chemical geothermometers and statistical analysis, we estimate the temperature of a possible deeper geothermal reservoir at Bugok, Southern Korea. Shallow thermal aquifers (down to about 400 m depth) are under exploitation in this area; the temperatures (up to 78 °C) of the produced fluids are the highest found in South Korea. Based on hydrochemical data and occurrence, the groundwaters at Bugok can be classified under three groups: Na-SO4 thermal groundwaters (CTGW) occurring in the central (about 0.24 km2) part of the area; Ca-HCO3 cold groundwater (SCGW) found in shallow peripheral parts of the CTGW; the intermediate-type groundwater (STGW). The CTGW type is typical of the Bugok thermal waters; they have the highest discharge temperatures and contain very high concentrations of Na (75.1–101.0 mg/L), K (2.9–6.9 mg/L) and SiO2 (62.0–84.5 mg/L) and are rich in sulfates.The major ion composition of the CTGW suggests that these waters are in partial equilibrium with rocks at depth. The application of various alkali-ion geothermometers yields temperature estimates in the 88–198 °C range for the thermal reservoir. Multiple-mineral equilibrium calculations indicate a similar but narrower temperature range (from about 100 to 155 °C). These estimates for CTGW are significantly higher than the measured discharge temperatures. Considering the heat losses occurring during the ascent of the waters, one can infer the presence of a deeper (around 1.8 km) thermal reservoir in the Bugok area that could be developed for district heating or other direct applications of geothermal heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号