首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决水性颜料色浆对Lyocell纤维纺丝液造成的凝固问题,制备了NMMO基超细炭黑色浆,利用其对Lyocell纤维进行原液着色。针对Lyocell纤维原液着色用超细炭黑的制备展开研究,探讨了分散剂的结构及用量,炭黑质量分数,水和NMMO组成混合溶剂中水的质量分数,超声波处理功率及时间对NMMO基超细炭黑的粒径、粒度分布及分散稳定性的影响。结果表明,以实验室自制的分散剂SP制备的NMMO基超细炭黑具有最小的粒径及优良的分散稳定性,与纺丝液相容性最好。通过正交试验优化得到NMMO基超细炭黑的制备工艺:分散剂对炭黑的质量分数2为20 %,炭黑对体系的质量分数为10 %,超声波处理时间为20 min,功率为800 W。  相似文献   

2.
纳米炭黑是聚丙烯腈纤维原液着色的关键材料之一,本研究以改性丙烯酸酯嵌段共聚物(SUA020)为分散剂,采用超声波制备了以二甲基甲酰胺(DMF)为分散介质的纳米炭黑,探讨了纳米炭黑对聚丙烯腈纤维原液性能的影响。结果表明当炭黑质量分数为10%,SUA020对炭黑质量分数为20%,在超声波处理功率为600W条件下分散20min,所制备纳米炭黑的粒径为108.7nm。纳米炭黑在聚丙烯腈纤维原液中具有良好的相容性和稳定性,当纳米炭黑对纤维干重为9.0%时,所制备原液着色聚丙烯腈浆膜的K/S值达到最高。  相似文献   

3.
为开发高黑度的原液着色聚酰胺6(PA6)纤维,将经原位聚合法制备的炭黑质量分数为1.0%~3.0%的系列PA6/炭黑(PA6/CB)复合材料进行熔融纺丝制备PA6/CB复合纤维,并对复合材料的形貌结构、热性能、晶型结构以及纤维的力学性能、取向度、色度值和色牢度进行表征。结果表明:经原位聚合法引入的炭黑在原液着色PA6/CB复合材料和纤维中分散均匀;炭黑在基材中起异相成核作用,添加炭黑的PA6/CB复合材料的结晶度和结晶温度均得到提高;炭黑可提升复合材料的热稳定性,并可促进PA6形成热力学性能更稳定的α晶型;随着炭黑质量分数的提高,PA6/CB复合纤维的断裂强度先提高后逐渐下降,当炭黑质量分数为1.0%时达到最大,为4.07 cN/dtex; PA6/CB复合纤维的取向度均高于纯PA6纤维;炭黑质量分数越高,PA6/CB复合纤维的颜色越黑,但其质量分数超过2%后纤维的黑度提升不明显。  相似文献   

4.
针对原液着色聚酯纤维原位聚合用乙二醇基色浆储存稳定性差、运输成本高的问题,采用控制变量法研究炭黑、分散剂、分散工艺对自分散纳米炭黑的影响,利用响应面优化试验,探讨制备过程中分散剂质量分数、研磨时间、研磨转速对自分散纳米炭黑粒径的影响,得出最优研磨分散条件。借助透射电子显微镜、热重分析仪、接触角测量仪等探究了自分散纳米炭黑的表观形貌、耐热性能和亲水性能等。结果表明:选用SUA-305作为分散剂,AP-104H作为炭黑,在分散剂质量分数为30%,研磨时间为2 h,研磨转速为3 500 r/min时,自分散纳米炭黑粒径最小,为85 nm,多分散性指数(PDI)为0.163,储存稳定性优良,预估储存周期为26.8个月;自分散纳米炭黑与乙二醇的接触角为7°,并展现出良好的自分散性能;自分散纳米炭黑的耐热性良好,满足在聚酯聚合阶段280℃不分解的要求。  相似文献   

5.
采用三种分散剂对炭黑进行直接分散制备炭黑分散液,讨论了分散剂和炭黑质量分数,以及球磨时间对炭黑分散液稳定性的影响;采用弛豫反演的核磁共振波谱判断炭黑分散液中氢质子的横向弛豫时间,讨论炭黑分散体中炭黑粒子与水的相互作用,并测试炭黑分散液的稳定性和流变性。结果表明,制备的三种炭黑分散液经过工艺优化,在-20℃和60℃条件下的粒径为110~182 nm,黏度为1.4~2.2 mPa·s,具备良好的粒度和黏度稳定性;由氢质子弛豫谱分析得知,水基炭黑分散液中,水主要以结合水的状态存在;由高分子聚合物DISPERBYK-190作为分散剂,制备的炭黑分散液分散效果最好。  相似文献   

6.
以可聚合分散剂SE-10对炭黑进行分散,然后通过细乳液聚合法制备超细包覆炭黑,研究了共聚单体种类及用量、引发剂用量、反应温度和时间对超细包覆炭黑性能的影响。结果表明相对于丙烯酸正丁酯和苯乙烯,甲基丙烯酸甲酯制备超细包覆炭黑的粒径较小,当MMA用量为颜料质量的25%,过硫酸铵为共聚单体质量的2%,在80℃下反应2h,制得的超细包覆炭黑粒径为157.4nm,在80℃条件下密封放置24小时后,超细包覆碳黑的粒度变化率仅为2.58%,与聚合前相比,聚合后炭黑分散体耐热稳定性、离心稳定性和冻融稳定性更好。  相似文献   

7.
为开发高黑度的细原液着色聚酯纤维,采用原位法连续聚合制备出炭黑质量分数为2%~3%的聚酯/炭黑(简称原位法PET/炭黑)体系,对其流变行为、结晶行为和炭黑分散形态等进行了表征,并制备了高速纺长丝。结果表明:原位法连续聚合使炭黑以直径小于1 μm的粒子簇团形式均匀分散在聚酯基体中;炭黑含量较低时的流变行为与PET相似,当炭黑质量分数达到3%时,原位法PET/炭黑熔体的表观黏度随剪切速率增大而快速降低;熔融结晶过程中,炭黑作为高效异相成核剂,显著加快了聚酯结晶速率,同时,聚酯与炭黑的良好相互作用,导致有更多的结晶缺陷,与PET相比,出现了熔融双峰,且高温熔融峰峰顶温、结晶度均降低,这与母粒法PET/炭黑体系明显不同。因为原位法保证了良好的炭黑分散性,原位法PET/炭黑可以稳定制备出炭黑质量分数为3%、单丝线密度为0.52 dtex、断裂强度≥3.31 cN/dtex的长丝。  相似文献   

8.
为探究超细氧化炭黑对原液着色黏胶纤维结构和性能的影响,利用超细氧化炭黑,采用原液着色技术制备了原液着色黏胶纤维。借助扫描电子显微镜、透射电子显微镜、热重分析仪、和X射线衍射仪研究了原液着色黏胶纤维的结构与性能。结果表明:当超细氧化炭黑质量分数小于等于3%时,超细氧化炭黑在黏胶纤维内分布均匀,纤维表面较光滑,且断面结构致密;超细氧化炭黑提高了黏胶纤维的热稳定性、结晶度和力学性能,当炭黑质量分数为3%时,纤维的强度和断裂伸长率分别为2. 56 cN/dtex和21. 5%;原液着色黏胶纤维具有良好的耐溶剂迁移性能和颜色性能,当超细氧化炭黑质量分数为3%时,L值为13. 33,摩擦、水洗色牢度均大于3级。  相似文献   

9.
针对聚乳酸纤维原液着色过程中炭黑与聚乳酸相容性差导致其力学性能下降的问题,采用原位聚合法制备了聚乳酸改性炭黑,并对聚乳酸纤维进行原液着色。探讨丙交酯用量、反应温度、聚合时间对聚乳酸改性炭黑的粒径及粒径分布的影响,并对其在聚乳酸纺丝溶剂中的分散稳定性进行测试,同时对加入改性与未改性炭黑前后的聚乳酸纺丝液及聚乳酸膜进行分析与表征。结果表明:在丙交酯单体的用量为1.5 g、聚合时间为6 h、聚合温度为70 ℃时制备出的改性炭黑的粒径最小,为184.2 nm,且其在聚乳酸纺丝溶剂中可以稳定分散,与聚乳酸相容性较好;与未改性炭黑相比,加入改性炭黑后聚乳酸的力学性能得到提升。  相似文献   

10.
为解决水性颜料色浆对Lyocell纤维纺丝液造成的凝固问题,利用N-甲基吗啉-N-氧化物(NMMO)基超细炭黑,采用原液着色技术制备了炭黑/Lyocell纤维素膜,探讨了炭黑/Lyocell纤维素膜的颜色性能、耐溶剂迁移性能、力学性能和结晶性能。结果表明,当炭黑含量为纤维素质量分数的3 %时,着色纤维素膜的颜色深度达到饱和,不再随炭黑含量的增加而升高,且炭黑质量分数低于3 %时,着色纤维素膜的摩擦和水洗牢度较高,耐水、丙酮和乙醇迁移性能良好。通过扫描电镜观察发现,炭黑在极性较高的水中更容易发生迁移。炭黑对纤维素膜的断裂强力和断裂伸长率有影响,但不会改变纤维素膜的晶体结构,研究结果对实现Lyocell纤维原液着色具有重要的参考作用。  相似文献   

11.
以羧甲基半纤维素钠作为分散剂,用球磨法制备水性炭黑色浆。探讨了分散剂用量、分散时间、球磨转速和炭黑用量对炭黑色浆分散性能的影响。通过测试分析炭黑粒子的大小和分散形态,确定了炭黑色浆的离心稳定性、温度稳定性和储藏稳定性。最佳制备工艺为:分散剂用量15%,分散时间90 min,球磨转速700 r/min,炭黑用量15%。制备的炭黑色浆粒径最小可达0.16μm,离心稳定性可达86.3%,具有很好的温度和储藏稳定性。  相似文献   

12.
以甲基丙烯酸、衣康酸、烯丙基磺酸钠和苯乙烯为单体,通过水溶液自由基共聚合,制备了一种四元高分子分散剂.研究了分散剂用量、相对分子质量及其PH值对不同质量分数的重质碳酸钙粘度、粒径和稳定性的影响.分散剂相对分子质量为10045,PH值为9.0时,对研磨GCC分散效果最好.分散剂适宜高固含量GCC悬浮液的制备.研磨质量分数为70%的GCC,球磨时间为30min,使其粒径为1.9μm,粘度降至201mPa·s,所需分散剂的用量为0.15%,其悬浮液沉降体积百分数(7d后测定)为60.5%.  相似文献   

13.
研究了超细靛蓝染料的制备工艺及其对棉织物的轧染性能.通过讨论分散剂结构和用量、染料质量分数和分散时间对靛蓝染料粒径的影响,结果表明,超细靛蓝染料较佳的制备工艺为染料质量分数为5%,分散剂FPE质量分数则为染料的30%,超声功率800 W,超声波处理70 min.采用制备的超细靛蓝染料对棉织物轧染,其优化的轧染工艺为染液质量分数1%,轧余率70%,浸轧3次,保险粉质量分数3.4%.与常规靛蓝染料相比,超细靛蓝染料染色织物的耐水洗色牢度和耐摩擦色牢度均有所提高.  相似文献   

14.
以正硅酸四乙酯和乙烯基三乙氧基硅烷为前驱体,通过溶胶-凝胶法先在有机颜料酞菁蓝15∶∶3表面引入双键,然后通过硫醇-烯点击反应法将巯基乙烷磺酸钠接枝在酞菁蓝15∶3表面,制备了在水相中具有自分散功能的纳米酞菁蓝15∶3粉体。结果表明,当巯基乙烷磺酸钠质量分数为40%、APS质量分数为6%时,纳米酞菁蓝15∶3粉体最小粒径为180 nm,接枝到颜料表面的巯基乙烷磺酸钠占颜料质量分数的6.17%,在不外加助剂的条件下,采用超声波处理20 min制备的分散体具有较好的耐热稳定性和离心稳定性。  相似文献   

15.
研究了荧光颜料/海藻纤维纺丝原液的分散稳定性及着色海藻纤维膜颜色性能。结果表明,采用苯乙烯马亚酸酐共聚物(SMA)制备的荧光颜料和海藻酸钠纤维纺丝液具有较高的温度稳定性,与海藻纤维纺丝液相似,荧光颜料/海藻纤维纺丝原液也表现出表观粘度随剪切速率的增加而降低。海藻纤维膜的K/S值和荧光强度随荧光颜料用量的增加而增大,当荧光颜料质量分数超过4%后,海藻纤维膜的荧光强度反而下降,且制备的着色海藻纤维膜具有良好的耐水迁移性能。  相似文献   

16.
有机溶剂体系合成纤维原液着色剂的研究及应用   总被引:1,自引:0,他引:1  
探讨了不同超分散剂种类、超分散剂用量、砂磨时间对以N,N-二甲基乙酰胺为分散介质的无机颜料色浆体系分散稳定性能的影响,结果表明炭黑色浆体系的最佳分散工艺:砂磨时间2 h、超分散剂CH-13用量为炭黑质量的10%;氧化铁红S 190色浆体系的最佳分散工艺:砂磨时间2 h、超分散剂CH-13用量为氧化铁红S190质量的5%.颜料色浆体系用于合成纤维的原液着色,对纤维的物理机械性能无负面影响(与未着色纤维相比,颜料着色纤维具有更大的断裂强度,且具有优异的耐洗及耐汗渍色牢度).  相似文献   

17.
为解决聚乳酸纤维采用常规染色工艺存在上染率低、易损伤其物理性能问题,通过使用色母粒原液着色法和纳米颜料进行原液着色,改善聚乳酸纤维染色浅、染色后性能差的问题;对比分析了普通分散剂和超分散剂对纳米颜料用于原液着色纤维的着色效果和力学性能、耐热迁移性的影响。结果表明:采用原液着色工艺着色的聚乳酸纤维色彩鲜艳、强伸性能较好;添加普通分散剂分散的纳米颜料粒径为微米级,最小约为5μm,着色纤维强伸性能损失约为10%,略优于常规染色工艺,但纤维耐热迁移性差,不利于后续加工;添加超分散剂分散的粒径为纳米级,着色纤维强伸性能损失不大于1%,且纤维耐热迁移性好,能够在加工和后处理中保持颜色稳定。  相似文献   

18.
以苯乙烯-马来酸酐共聚物部分酯化物(PESMA)为壁材,通过喷雾干燥技术制备了涂料印花纳米自分散炭黑,研究了PESMA结构和制备工艺对纳米自分散炭黑在水中分散性能的影响。研究结果表明,纳米自分散炭黑较佳的制备工艺是PESMA酯化剂为正丁醇,酯化度为17.2%,PESMA数均分子质量为9 130,PESMA占炭黑质量的12%,p H值为9。采用此工艺条件制备的纳米自分散炭黑在水相中分布均匀,平均粒径166 nm,具有良好的稳定性。涂料印花表明,纳米自分散炭黑印花织物比普通商品化炭黑分散体具有更高的K/S值和更好的匀染性。  相似文献   

19.
《印染》2016,(13)
以苯乙烯-马来酸酐共聚物部分酯化物(PESMA)为壁材,通过喷雾干燥技术制备了涂料印花纳米自分散炭黑,研究了PESMA结构和制备工艺对纳米自分散炭黑在水中分散性能的影响。研究结果表明,纳米自分散炭黑较佳的制备工艺是PESMA酯化剂为正丁醇,酯化度为17.2%,PESMA数均分子质量为9 130,PESMA占炭黑质量的12%,p H值为9。采用此工艺条件制备的纳米自分散炭黑在水相中分布均匀,平均粒径166 nm,具有良好的稳定性。涂料印花表明,纳米自分散炭黑印花织物比普通商品化炭黑分散体具有更高的K/S值和更好的匀染性。  相似文献   

20.
《印染》2021,(10)
利用实验室自制的聚羧酸盐类分散剂制备液体分散染料,研究了分散剂用量和种类对分散染料粒径的影响。结果表明:分散剂质量分数为15%(对染料质量),染料含固量为10%时,制备的液体分散染料粒径为194.5 nm,多分散指数(PDI)为0.220,离心稳定性为95.7%,放置30 d后平均粒径在250 nm以下。将制备的液体分散染料分散橙30、分散蓝291∶1和分散紫93∶1按照质量比3.7∶1.3∶1.0拼混后染涤纶,可染得颜色均匀的藏青色,且各项色牢度皆优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号