首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to assess the load predicting capability of a classical Beddoes–Leishman dynamic stall model in a horizontal axis wind turbine environment, in the presence of yaw misalignment. The dynamic stall model was tailored to the horizontal axis wind turbine environment and validated against unsteady thick airfoil data. Subsequently, the dynamic stall model was implemented in a blade element‐momentum code for yawed flow, and the results were compared with aerodynamic measurements obtained in the MEXICO (Model Rotor Experiments under Controlled Conditions) project on a wind turbine rotor placed in a large scale wind tunnel. In general, reasonable to good agreement was found between the blade element‐momentum model and MEXICO data. When large yaw misalignments were imposed, poor agreement was found in the downstroke of the movement between the model and the experiment. Still, over a revolution, the maximum normal force coefficient predicted was always within 8% of experimental data at the inboard stations, which is encouraging especially when blade fatigue calculations are being considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, unsteady flow features and the blade aerodynamic loading of the National Renewable Energy Laboratory phase VI wind turbine rotor, under yawed flow conditions, were numerically investigated by using a three‐dimensional incompressible flow solver based on unstructured overset meshes. The effect of turbulence, including laminar‐turbulent transition, was accounted for by using a correlation‐based transition turbulence model. The calculations were made for an upwind configuration at wind speeds of 7, 10 and 15 m/sec when the turbine rotor was at 30° and 60° yaw angles. The results were compared with measurements in terms of the blade surface pressure and the normal and tangential forces at selected blade radial locations. It was found that under the yawed flow conditions, the blade aerodynamic loading is significantly reduced. Also, because of the wind velocity component aligned tangent to the rotor disk plane, the periodic fluctuation of blade loading is obtained with lower magnitudes at the advancing blade side and higher magnitudes at the retreating side. This tendency is further magnified as the yaw angle becomes larger. At 7 m/sec wind speed, the sectional angle of attack is relatively small, and the flow remains mostly attached to the blade surface. At 10 m/sec wind speed, leading‐edge flow separation and strong radial flow are observed at the inboard portion of the retreating blade. As the wind speed is further increased, the flow separation and the radial flow become more pronounced. It was demonstrated that these highly unsteady three‐dimensional aerodynamic features are well‐captured by the present method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
基于风力机整机刚柔耦合模型,文章提出了一种叶片动态气弹扭转变形分析的新方法。该方法采用SIMPACK和AeroDyn软件联合数值仿真对风力机在几种恶劣风况下进行动力学分析,通过对分析结果的变换处理,进而得到叶片在复杂工况下的动态气弹变形数据。采用该方法,重点分析了叶片气弹扭转变形对风力机气动功率及气弹稳定性的影响。该方法为大型风电叶片的气弹特性评价以及气弹剪裁设计提供了一种新的技术手段。  相似文献   

5.
Yaw misalignment is currently being treated as one of the most promising methods for optimizing the power of wind farms. Therefore, detailed knowledge of the impact of yaw on the wake development is necessary for a range of operating conditions. This study numerically investigates the wake development behind a single yawed wind turbine operating at different tip‐speed ratios and yaw angles using the actuator‐line method in the spectral‐element code Nek5000. It is shown that depending on the tip‐speed ratio, the blade loading varies along the azimuth, resulting in a wake that is asymmetric in both the horizontal and vertical directions. Large tip‐speed ratios as well as large yaw angles are shown to decrease the vertical asymmetry of the yaw‐induced counter‐rotating vortex pair. Both parameters have the effect that they increase the spanwise force induced by yaw relative to the wake rotation. However, while the strength of the counter‐rotating vortex pair in the far wake increases with yaw angle, it is shown to decrease with the tip‐speed ratio. The vertical shift in the wake center is found to be highly dependent on the yaw angle and the tip‐speed ratio. These detailed insights into the yawed wake are important when optimizing potential downstream turbines.  相似文献   

6.
针对风力机不断向大型化发展的趋势,导致结构柔度增加,气弹耦合特性和振动增强,研究了大型风力机高效精确的气弹响应分析方法。为了更准确模拟大型风力机气流沿叶片展向的三维流动现象,采用螺旋尾涡升力线模型代替传统叶素动量理论,建立了叶片气动载荷分析模型,进而结合风力机多体系统动力学模型,构建了机组的气弹耦合动力学方程和数值求解方法。以某10 MW风力机叶片为例,研究了稳态风况下不同风速的叶片气动性能,以及有效攻角、切向力等沿叶展方向的分布特点,并与采用修正叶素动量理论的气弹分析程序(HAWC)对比,结果表明,升力线理论无需引入经验修正模型即能获得叶素动量理论经修正后的分析精度。最后,通过非稳态风况下风力机的气弹响应分析,证明本文方法对大型风力机气弹耦合分析的有效性和准确性。  相似文献   

7.
Wind turbine design codes for calculating blade loads are usually based on a blade element momentum (BEM) approach. Since wind turbine rotors often operate in off‐design conditions, such as yawed flow, several engineering methods have been developed to take into account such conditions. An essential feature of a BEM code is the coupling of local blade element loads with an external (induced) velocity field determined with momentum theory through the angle of attack. Local blade loads follow directly from blade pressure measurements as performed in the National Renewable Energy Laboratory (NREL) phase IV campaign, but corresponding angles of attack cannot (on principle) be measured. By developing a free wake vortex method using measured local blade loads, time‐dependent angle of attack and induced velocity distributions are reconstructed. In a previous paper, a method was described for deriving such distributions in conjunction with blade pressure measurements for the NREL phase VI wind turbine in axial (non‐yawed) conditions. In this paper, the same method is applied to investigate yawed conditions on the same turbine. The study considered different operating conditions in yaw in both attached and separated flows over the blades. The derived free wake geometry solutions are used to determine induced velocity distributions at the rotor blade. These are then used to determine the local (azimuth time dependent) angle of attack, as well as the corresponding lift and drag for each blade section. The derived results are helpful to develop better engineering models for wind turbine design codes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
偏航状态下风力机叶片与流场之间相互作用会导致风力机近尾迹流场的湍流特征变化,采用双向流固耦合对不同偏航工况下水平轴风力机近尾迹流场进行数值模拟研究,获得不同偏航角下尾迹湍流特征演化规律。结果表明:随着偏航角的增大,正偏航侧会出现“速度亏损圆环”,且此圆环的范围呈扩大趋势;偏航角的增大对叶根处速度亏损影响最大,对叶尖处速度亏损影响最小,与正偏航侧相比,负偏航侧的速度亏损值减为约1/2;随着偏航角的增大,正负偏航侧的湍流强度变化呈不对称性,正偏航侧对湍流耗散的影响程度较负偏航侧大;涡流黏度越来越小,且在偏航10°涡流黏度相对于偏航5°减小约1/2,沿着轴向叶尖涡的管状环涡结构变得不稳定,出现明显耗散,且在偏航15°之后涡结构的耗散破裂程度越来越剧烈,进而对风力机气动噪声产生较大影响。  相似文献   

9.
采用CFD方法,以NH1500三叶片大型水平轴风力机为研究对象,研究额定风速剪切来流下的塔影效应对水平轴风力机叶片和风轮非定常气动载荷的影响。结果表明:剪切来流下,叶片和风轮的气动载荷均呈余弦变化规律,塔影效应的主要影响叶片方位角范围为160°~210°,且该范围不随风剪切指数的变化而变化。相同风剪切指数下,塔影效应对叶片和风轮气动载荷的均方根影响较小,对其波动影响较大。当风剪切指数从0.12增至0.30时,塔影效应下,叶片气动载荷的均方根减小,推力和转矩的波动幅度增大,偏航力矩和倾覆力矩的波动幅度减小;风轮推力和转矩的均方根减小,波动幅度变化较小,而倾覆力矩和偏航力矩的均方根增大,且波动幅度也增大。  相似文献   

10.
This paper presents the development of a computational aeroelastic tool for the analysis of performance, response and stability of horizontal‐axis wind turbines. A nonlinear beam model for blades structural dynamics is coupled with a state‐space model for unsteady sectional aerodynamic loads, including dynamic stall effects. Several computational fluid dynamics structural dynamics coupling approaches are investigated to take into account rotor wake inflow influence on downwash, all based on a Boundary Element Method for the solution of incompressible, potential, attached flows. Sectional steady aerodynamic coefficients are extended to high angles of attack in order to characterize wind turbine operations in deep stall regimes. The Galerkin method is applied to the resulting aeroelastic differential system. In this context, a novel approach for the spatial integration of additional aerodynamic states, related to wake vorticity and dynamic stall, is introduced and assessed. Steady‐periodic blade responses are evaluated by a harmonic balance approach, whilst a standard eigenproblem is solved for aeroelastic stability analyses. Drawbacks and potentialities of the proposed model are investigated through numerical and experimental comparisons, with particular attention to rotor blades unsteady aerodynamic modelling issues. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal, multi‐body or the finite‐element approach to model the turbine structural dynamics. The present work describes the development of a novel aeroelastic code that combines a three‐dimensional viscous–inviscid interactive method, method for interactive rotor aerodynamic simulations (MIRAS), with the structural dynamics model used in the aeroelastic code FLEX5. The new code, called MIRAS‐FLEX, is an improvement on standard aeroelastic codes because it uses a more advanced aerodynamic model than BEM. With the new aeroelastic code, more physical aerodynamic predictions than BEM can be obtained as BEM uses empirical relations, such as tip loss corrections, to determine the flow around a rotor. Although more costly than BEM, a small cluster is sufficient to run MIRAS‐FLEX in a fast and easy way. MIRAS‐FLEX is compared against the widely used FLEX5 and FAST, as well as the participant codes from the Offshore Code Comparison Collaboration Project. Simulation tests consist of steady wind inflow conditions with different combinations of yaw error, wind shear, tower shadow and turbine‐elastic modeling. Turbulent inflow created by using a Mann box is also considered. MIRAS‐FLEX results, such as blade tip deflections and root‐bending moments, are generally in good agreement with the other codes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Wind turbine wakes have been recognized as a key issue causing underperformance in existing wind farms. In order to improve the performance and reduce the cost of energy from wind farms, one approach is to develop innovative methods to improve the net capacity factor by reducing wake losses. The output power and characteristics of the wake of a utility‐scale wind turbine under yawed flow is studied to explore the possibility of improving the overall performance of wind farms. Preliminary observations show that the power performance of a turbine does not degrade significantly under yaw conditions up to approximately 10°. Additionally, a yawed wind turbine may be able to deflect its wake in the near‐wake region, changing the wake trajectory downwind, with the progression of the far wake being dependent on several atmospheric factors such as wind streaks. Changes in the blade pitch angle also affect the characteristics of the turbine wake and are also examined in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The behaviour of Tidal Stream Turbines (TST) in the dynamic flow field caused by waves and rotor misalignment to the incoming flow (yaw) is currently unclear. The dynamic loading applied to the turbine could drive the structural design of the power capture and support subsystems, device size and its proximity to the water surface and sea bed. In addition, the strongly bi-directional nature of the flow encountered at many tidal energy sites may lead to devices omitting yaw drives; accepting the additional dynamic loading associated with rotor misalignment and reduced power production in return for a reduction in device capital cost. Therefore it is imperative to quantify potential unsteady rotor loads so that the TST device design accommodates the inflow conditions and avoids an unacceptable increase in maintenance action or, more seriously, suffers sudden structural failure.The experiments presented in this paper were conducted using a 1:20th scale 3-bladed horizontal axis TST at a large towing tank facility. The turbine had the capability to measure rotor thrust and torque whilst one blade was instrumented to acquire blade root strain, azimuthal position and rotational speed all at high frequency. The maximum out-of-plane bending moment was found to be as much as 9.5 times the in-plane bending moment. A maximum loading range of 175% of the median out-of-plane bending moment and 100% of the median in-plane bending moment was observed for a turbine test case with zero rotor yaw, scaled wave height of 2 m and intrinsic wave period of 12.8 s.A new tidal turbine-specific Blade-Element Momentum (BEM) numerical model has been developed to account for wave motion and yawed flow effects. This model includes a new dynamic inflow correction which is shown to be in close agreement with the measured experimental loads. The gravitational component was significant to the experimental in-plane blade bending moment and was also included in the BEM model. Steady loading on an individual blade at positive yaw angles was found to be negligible in comparison to wave loading (for the range of experiments conducted), but becomes important for the turbine rotor as a whole, reducing power capture and rotor thrust. The inclusion of steady yaw effects (using the often-applied skewed axial inflow correction) in a BEM model should be neglected when waves are present or will result in poor load prediction reflected by increased loading amplitude in the 1P (once per revolution) phase.  相似文献   

15.
Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw misalignment is assessed. The study is performed through simulations of a reference turbine. The study shows that optimal yaw misalignment angles for minimizing the blade load variations can be identified for both deterministic and turbulent inflows. It is shown that the optimal yaw misalignment angles can be applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady‐state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level. In inflows with high levels of turbulence, the observed blade fatigue load reductions are small, whereas the blade fatigue loads are reduced by 20% at low turbulence levels. For both deterministic and turbulent inflows, it is seen that the blade load reductions are penalized by increased load variations on the non‐rotating turbine parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The tip vortex of a wind turbine rotor blade is the result of a distribution of aerodynamic loads and circulation over the blade tip. The current knowledge on the generation of the tip vorticity in a 3D rotating environment still lacks detailed experimental evidence, particularly for yawed flow. The aim of this paper is to investigate how circulation at the blade tip behaves and how vorticity is eventually released in the wake, for both axial and 30° yawed flow conditions through the combination of experimental and numerical simulations. Stereo particle image velocimetry is used to measure the flow field at the tip of a 2m diameter, two‐bladed rotor at the TU Delft Open Jet Facility, for both axial and yawed flow; numerical simulations of the experiments are performed using a 3D, unsteady potential flow free‐wake vortex model. The generation mechanisms of the tip vorticity are established. The spanwise circulation along the blade exhibits a similar variation in both axial and yaw cases. A comparison of the chordwise directed circulation variation along the chord between axial and yawed flow is also presented and shown to be different. The analysis is based on contour integration of the velocity field. The tip vortex trajectory for axial flow confirms previous observations on the MEXICO rotor. The experimental results for yawed conditions have clearly shown how vorticity is swept radially away from the blade under the influence of the in‐plane radial component of flow. Such phenomena were only partially captured by the numerical model. The results of this work have important implications on the modelling of blade tip corrections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
For a better design of tidal stream turbines operated in off-design conditions, analyses considering the effects of blade deformation and yawed inflow conditions are necessary. The flow load causes deformation of the blade, and the deformation affects the turbine performance in return. Also, a yawed inflow influences the performance of the turbine. As a validation study, a computational fluid dynamics (CFD) simulation was carried out to predict the performance of a horizontal axis tidal stream turbine (HATST) with rigid blades. The numerical uncertainty for the turbine performance with blade deformation and a yawed inflow was evaluated using the concept of the grid convergence index (GCI). A fluid–structure interaction (FSI) analysis was carried out to estimate the performance of a turbine with flexible composite blades, with the results then compared to those of an analysis with rigid blades. The influence of yawed inflow conditions on the turbine performance was investigated and found to be important in relation to power predictions in the design stages.  相似文献   

18.
An improved physical understanding of the rotor aerodynamics of a horizontal axis wind turbine (HAWT) is required to reduce the uncertainties associated with today's design codes. Wind tunnel experiments contribute to increased knowledge and enable validation and construction of models. The present study focuses on the near‐wake of a model HAWT in both axial and yawed flow conditions. At three downstream planes parallel to the rotor plane, single‐sensor hot‐film traverses are made. The phase‐locked unsteady three‐dimensional flow velocity vector is determined by a novel data reduction method. A series of two papers discusses the near‐wake aerodynamics of a model HAWT. The main goals are to obtain a detailed understanding of the near‐wake development and to arrive at a base for model construction and validation. The first paper presents the experimental setup, data reduction and the results for the baseline case (axial flow conditions). In the second paper, the results for the yawed flow cases are presented and the effect of yaw misalignment on the near‐wake development is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
L. Myers  A.S. Bahaj   《Renewable Energy》2006,31(2):197-208
A 0.4 m diameter horizontal axis marine current turbine was tested in a circulating water channel. The power output was measured over a range of flow speeds, blade pitch and rotor yaw angles. Experimental results were compared with the modelled output determined from a commercial blade element momentum computer package. The measured power output was found to be far in excess of predicted values for high blade inflow angles. This occurred where approximately half the blade was operating above the stall angle of attack. This represents 25% of the rotor disk area producing power under heavy stall. Values of overpower up to 140% were measured which are comparable to previous studies. The results show that power production and the optimum tip speed ratio reduced with yaw except for cases with high blade inflow angles.  相似文献   

20.
T. F. Pedersen  G. Demurtas  F. Zahle 《风能》2015,18(11):1933-1952
The spinner anemometer is an instrument for yaw misalignment measurements without the drawbacks of instruments mounted on the nacelle top. The spinner anemometer uses a non‐linear conversion algorithm that converts the measured wind speeds by three sonic sensors on the spinner to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion algorithm utilizes two constants that are specific to the spinner and blade root design and to the mounting positions of the sonic sensors on the spinner. One constant, k2, mainly affects the measurement of flow angles, while the other constant, k1, mainly affects the measurement of wind speed. The ratio between the two constants, kα=k2/k1, however, only affects the measurement of flow angles. The calibration of kα is thus a basic calibration of the spinner anemometer. Theoretical background for the non‐linear calibration is derived from the generic spinner anemometer conversion algorithm. Five different methods were evaluated for calibration of a spinner anemometer on a 500 kW wind turbine. The first three methods used rotor yaw direction as reference angular, while the wind turbine, was yawed in and out of the wind. The fourth method used a hub height met‐mast wind vane as reference. The fifth method used computational fluid dynamics simulations. Method 1 utilizing yawing of the wind turbine in and out of the wind in stopped condition was the preferred method for calibration of kα. The uncertainty of the yaw misalignment calibration was found to be 10%, giving an uncertainty of 1° at a yaw misalignment of 10°. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号