首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aims to study supercritical anti-solvent micronization of marigold derived purified lutein that was dissolved in the mixture of hexane and ethyl acetate (70:30 v/v), the solvent used as the mobile phase for chromatographic purification. The results show significant effect of pressure on the morphology of micronized lutein particles. The increase in lutein initial concentration from 1.5 mg/ml to 3.2 mg/ml and the increase in SC-CO2 flow rate from 15 ml/min to 25 ml/min show no significant effects on the morphology of lutein particles. However, the reduction of mean particle size from about 2 μm to 0.8 μm was observed by increasing SC-CO2 flow rate. The X-ray diffraction patterns of the micronized lutein particles show apparent amorphous nature, while the Fourier transform infrared spectroscopy results show that no chemical structural changes occurred. Moreover, the solubility of the micronized lutein particles in aqueous solution was found to increase significantly from being almost insoluble to having approximately 20% solubility  相似文献   

2.
In recent years, plant derived polymers have evoked tremendous interest in the field of drug delivery. In this work, a promising anticancer drug, paclitaxel, was precipitated in the basil seeds mucilage (BSM) using supercritical carbon dioxide (SC-CO2). The employed SC-CO2 process in this research is a combination of gas antisolvent and phase inversion techniques and consists of two steps: (1) casting solution preparation, a uniform mixture of BSM, water, paclitaxel and dimethyl sulfoxide (DMSO), (2) simultaneous generation and precipitation of nanoparticles in BSM structure using SC-CO2 as antisolvent. The effect of DMSO/water ratio (4 and 6 (v/v)), pressure (10–16 MPa) and CO2 addition rate (1–3 mL/min) on mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE) were studied. Particle analyses were performed by scanning electron microscopy (SEM) and Zetasizer. High performance liquid chromatography was utilized for studying DLE. Nanoparticles of paclitaxel (MPS of 117–200 nm depending on process variables) with narrow PSD were successfully precipitated in BSM structure with DLE of 56.8–78.2%. The FTIR spectra confirmed that paclitaxel actually precipitated in basil seeds mucilage. Experimental results indicated that higher DMSO/water ratio, pressure and CO2 addition decreased MPS and DLE.  相似文献   

3.
Due to growing concerns regarding health, safety and the environment, non-conventional methods for particle formation and micronization that are either solvent-less or use environmentally acceptable solvents such as carbon dioxide have come into favor. Supercritical CO2 (sc CO2) (T > 31.1 °C, P > 7.3 MPa) has been used in food and pharmaceutical industries to minimize the use of organic solvents, produce new food products, produce environmentally superior food products and to process and micronize (0.1–5 μm) pharmaceuticals. Control of particle size increases the dissolution rate of drugs into the body. Techniques that use sc CO2 eliminate inherent drawbacks of conventional methods such as thermal or mechanical degradation of the product, poor control of the particle size and morphology, lack of brittleness of some polymers and low encapsulation efficiency. Several techniques have been reported for the particle formation and micronization using supercritical fluids that have been successfully scaled up for commercial use. Supercritical CO2 has also been used to develop applications for medicines, essential oils, vitamins, food grade polymers, catalysts and pigments. This review highlights the process mechanism of supercritical fluid based techniques as well as some applications on particle formation and micronization.  相似文献   

4.
Lecithin was isolated from squid viscera residues after supercritical carbon dioxide (SC-CO2) extraction at 25 MPa and 45 °C. The particle formation of squid lecithin with biodegradable polymer, polyethylene glycol (PEG) was performed by PGSS using SC-CO2 in a thermostatted stirred vessel. By applying different temperatures (40 and 50 °C) and pressures (20–30 MPa), conditions were optimized. Two nozzles of different diameters (250 and 300 μm) were used for PGSS and the reaction time was 1 h. The average diameter of the particles obtained by PGSS at different conditions was about 0.74–1.62 μm. The lowest average size of lecithin particle with PEG was found by the highest SC-CO2 density conditions with the stirring speed of 400 rpm and nozzle size of 250 μm. The inclusion of lecithin in PEG was quantified by HPLC. Acid value and peroxide value was measured after micronization of lecithin.  相似文献   

5.
In the supercritical antisolvent precipitation (SAS), the jet fluid dynamics is characterized by two-phase mixing at subcritical conditions, and by one-phase mixing at completely developed supercritical conditions. The amplitude of the pressure range, in which binary systems organic solvent/scCO2 exhibit the transition between two-phase to one-phase mixing, depends on the organic solvent that is in contact with supercritical carbon dioxide (scCO2) and conditions the morphology of the microparticles produced by SAS. When this pressure range is wide, as in the case of dimethylsulfoxide (DMSO), solutes solubilized in the organic solvent can be precipitated as microparticles by atomization, droplets formation and drying; when this pressure range is narrow, as for acetone, gas mixing prevails and only nanoparticles are generally observed. Therefore, generally speaking, solutes that are soluble only in solvents exhibiting gas mixing in scCO2, do not exhibit microparticles morphology and this fact is a limitation for several industrial applications.In this work, a model compound, cellulose acetate (CA), that is slightly soluble in DMSO and freely soluble in acetone, was processed by SAS using mixtures of the two solvents that exhibit intermediate behaviors between the two pure solvents, to extend two phase mixing and produce CA microparticles. Using different DMSO/acetone mixture percentages, the effects of the polymer concentration in the liquid solution and of the pressure were studied. A mixture of DMSO/Acetone 50/50 (v/v), at a pressure of 85 bar and a concentration of the liquid solution equal to 40 mg/mL, efficiently produced non-coalescing CA microparticles with a mean diameter of 0.42 μm and a standard deviation of about 0.15 μm, demonstrating that this SAS strategy can be successful.  相似文献   

6.
The combined effect of supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) on the inactivation kinetics of Escherichia coli, Saccharomyces cerevisiae and pectin-methyl esterase (PME) in orange juice was studied in order to select models that can predict their inactivation behaviour based on process parameters. Experiments were performed at different temperatures (31–41 °C, 225 bar) and pressures (100–350 bar, 36 °C). The inactivation rate of E. coli, S. cerevisiae and PME increased with pressure and temperature during SC-CO2 + HPU treatments. The SC-CO2 + HPU inactivation kinetics of E. coli, S. cerevisiae and PME were represented by models that included temperature, pressure and treatment time as variables, based on the Biphasic, the Peleg Type B, and the fractional models, respectively. The HPU-assisted SC-CO2 batch system permits the use of mild process conditions and treatment times that can be even shorter than those of continuous SC-CO2 systems.  相似文献   

7.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   

8.
As a novel technique, supercritical CO2 (SC-CO2) extraction enhanced by ultrasound was applied to the extraction of lutein esters from marigold and the extraction curves were described by Sovová model. The mass transfer coefficient in the solid phase (ks) increased from 3.1 × 10−9 to 4.3 × 10−9 m/s due to ultrasound. The effect of extraction parameters including particle size of matrix, temperature, pressure, flow rate of CO2, and ultrasonic conditions consisting of power, frequency and irradiation time/interval on the yield of lutein esters were investigated with single factor experiments. The results showed that the yield of lutein esters increased significantly with the presence of ultrasound (p < 0.05). The maximal yield of lutein esters (690 mg/100 g) was obtained for a particle size fraction of 0.245–0.350 mm, extraction pressure of 32.5 MPa, temperature of 55 °C and CO2 flow rate of 10 kg/h with ultrasonic power of 400 W, ultrasonic frequency of 25 kHz and ultrasonic irradiation time/interval of 6/9 s.  相似文献   

9.
The supercritical antisolvent technology is used to precipitate polyvinylpyrrolidone (PVP) particles and crystallise ibuprofen sodium (IS) crystals separately and in the form of solid dispersion together. Supercritical carbon dioxide (scCO2) is used as antisolvent. For PVP particle generation, ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 wt% and 1.5 wt%, the operation pressure between 10 MPa and 30 MPa and the composition of ethanol/acetone solvent mixtures between 100 wt% and 0 wt% of ethanol at a constant temperature of 313 K. Furthermore, the mean molecular weight of the polymer was varied between 40 kg mol−1, 360 kg mol−1 and 1300 kg mol−1. An increase of the content of the poor solvent acetone in the initial solvent mixture as well as the usage of PVP with a higher molecular weight, leads to a significant decrease in mean particle size. At all the investigated parameters always fully amorphous PVP powder precipitates. For IS, only ethanol was used as the solvent, the initial IS concentration in the solution was varied between 1 wt% and 3 wt% and the operation pressure between 10 MPa and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallised IS crystals. Irrespective of the parameters used, always the same polymorphic form of ibuprofen sodium is produced. The solid dispersions were generated at different compositions of PVP to IS and with two different molecular weights of PVP at otherwise constant conditions. Fully amorphous solid dispersions consisting of IS and PVP together were generated at different ratios of PVP to IS.The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “non-ideal” solutes. Furthermore, the study of the “unconventional” SAS parameters, molecular weight and solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. Next to the investigation into the behaviour of both solutes separately, fully amorphous solid dispersions consisting of IS and PVP together were generated. While X-ray diffraction was used to analyze the crystalline structure of the particles, respectively, solid dispersions, their morphology was analysed using scanning electron microscopy (SEM).  相似文献   

10.
Ethanol modified supercritical carbon dioxide (SC-CO2) extraction of flavonoids from Momordica charantia L. fruits and its antioxidant activity were performed. The influences of parameters such as temperature, extraction time and pressure on the yield of flavonoids were investigated. The antioxidant activities of flavonoids were assessed by means of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay and β-carotene bleaching test. The experimental data obtained indicated that pressure, temperature and time had significant effect on the extraction yield. The optimum extraction conditions, determined by the 3D response surface and contour plots derived from the mathematical models, were as follows: extraction temperature 46 °C, pressure 33.4 MPa, and extraction time 53.2 min. Under these conditions, the experimental value was 15.47 mg/g, which was well matched with value predicted by the model. The antioxidant activity of flavonoids obtained by ethanol modified SC-CO2 extraction method had higher antioxidant activity than the flavonoids extracted by conventional solvent extraction (CSE) method. The DPPH radical-scavenging ability of flavonoids obtained by ethanol modified SC-CO2 extraction method reached to 96.14 ± 1.02%, equivalent to the clearance rate of ascorbic acid at 1.2 mg/mL. Results indicated that ethanol modified SC-CO2 extraction was a suitable approach for the selective extraction of flavonoids from M. charantia L.  相似文献   

11.
Supercritical carbon dioxide (SC-CO2) extraction of grape marc was studied using water (W) and ethanol (EtOH) as co-solvent at 15% (w/w), 100 and 200 MPa, and 313.15, 323.15 and 333.15 K to analyze their influence upon total phenols of the extracts. The overall extraction curves were determined and suggested 10 MPa and 313.15 K as the best operating conditions for SC-CO2 + 15%W extraction, and 10 MPa and 333.15 K for SC-CO2 + 15% EtOH. The phenolic yields obtained were 63.4 g/kg of extract for SC-CO2 + 15% W and 38.8 g/kg of extract for SC-CO2 + 15% EtOH. An alternative method combining Sc-CO2 + 15% W extraction, followed by SC-CO2 + 15% EtOH was tested. This procedure provided the best results allowing to obtain the highest phenolic yield (68.0 g/kg of extract), phenol content (733.6 mg GAE/100 g DM), proanthocyanidins concentration (572.8 mg catechin/100 g DM) and antioxidant activity (2649.6 mg α-tocopherol/100 g DM). SC-CO2 methods were compared with methanol extraction.  相似文献   

12.
The particle sizes of the pharmaceutical substances are important for their bioavailability. The bioavailability can be improved by reducing the particle size of the drug. In this study, salicylic acid and taxol were micronized by the rapid expansion of supercritical fluids (RESS). Supercritical CO2 and CO2 + ethanol mixture were used as solvent. Experiments were carried out to investigate the effect of extraction temperature (318–333 K) and pressure (15–25 MPa), pre-expansion temperature (353–413 K), expansion chamber temperature (273–293 K), spray distance (6–13 cm), co-solvent concentration (ethanol, 1, 2, 3, v/v, %) and nozzle configuration (capillary and orifice nozzle) on the size and morphology of the precipitated salicylic acid particles. For taxol, the effects of extraction pressure (25, 30, 35 MPa) and co-solvent concentration (ethanol, 2, 5, 7, v/v, %) were investigated. The characterization of the particles was determined by scanning electron microscopy (SEM), optical microscopy, and LC–MS analysis.The particle size of the original salicylic acid particles was L/D: 171/29–34/14 μm/μm. Depending upon the different experimental conditions, smaller particles (L/D: 15.73/4.06 μm/μm) were obtained. The particle size of taxol like white crystal powders was reduced from 0.6–17 μm to 0.3–1.7 μm The results showed that the size of the precipitated salicylic acid and taxol particles were smaller than that of original particles and RESS parameters affect the particle size.  相似文献   

13.
Industrially, thermal treatments are extensively used to inactivate microorganisms in foods. However, the demand for new pasteurization methods with reduced impact on the nutritional content and overall food quality is increasing. In this context, this study investigated and compared the effect of supercritical carbon dioxide (SC-CO2) alone or in combination with high power ultrasound (HPU) on both the natural microbial flora (mesophilic, lactic acid bacteria and yeast and molds) of coconut water and the pathogenic Gram-negative bacteria Salmonella enterica inoculated in the product. Inactivation kinetics were obtained at 12 MPa, by means of batch apparatuses, at different times (from 1 up to 60 min) and temperature conditions (from 25 up to 45 °C). The synergistic effect of SC-CO2 + HPU was evident and a higher microbial reduction was achieved compared to SC-CO2 alone: at 12 MPa and 40 °C about 5 log reductions were achieved for natural microbial flora in about 15 min while about 30 min were needed for SC-CO2 treatment. The storage study highlighted that SC-CO2 treated coconut water resulted microbiologically unstable and showed heavy regrowth phenomena during the storage, while, a full shelf life of 4 weeks was assured for SC-CO2 + HPU treated samples.  相似文献   

14.
Supercritical antisolvent (SAS) precipitation has been successfully used in the micronization of several compounds. Nevertheless, the role of high-pressure vapor–liquid equilibria, jet fluid dynamics and mass transfer in determining particle size and morphology is still debated. In this work, CO2 has been adopted as supercritical antisolvent and elastic light has been used to acquire information on jet fluid dynamics using thin wall injectors for the investigation of the liquid solvents acetone and DMSO at operating conditions of 40 °C in the pressure range between 6 and 16 MPa. The results show that two-phase mixing after jet break-up is the phenomenon that characterizes the jet fluid dynamics at subcritical conditions. When SAS is performed at supercritical conditions a transition between multi-phase and single-phase mixing is observed by increasing the operating pressure. Single-phase mixing is due to the very fast disappearance of the interfacial tension between the liquid solvent and the fluid phase in the precipitator. The transition between these two phenomena depends on the operating pressure, but also on the viscosity and the surface tension of the solvent. Indeed, single-phase mixing has been observed for acetone very near the mixture critical point, whereas DMSO showed a progressive transition for pressures of about 12 MPa.In the second part of the work, a solute was added to DMSO to study the morphology of the microparticles formed during SAS precipitation at the different process conditions, to find a correlation between particle morphology and the observed jet. Expanded microparticles were obtained working at subcritical conditions; whereas spherical microparticles were obtained operating at supercritical conditions up to the pressure where the transition between multi- and single-phase mixing was observed. Nanoparticles were obtained operating far above the mixture critical pressure. The observed particle morphologies have been explained considering the interplay among high-pressure phase equilibria, fluid dynamics and mass transfer during the precipitation process.  相似文献   

15.
Supercritical anti-solvent precipitation with enhanced mass transfer (SAS-EM) was applied for the production of micro and sub-microparticles of poly-lactic acid (PLA). SAS-EM technique uses an ultrasonic vibrating surface to enhance mass transfer rate between supercritical CO2 and solvent. Without applying ultrasonic power, which is same as SAS process, PLA particles with average diameters ranging between 1 μm and 3 μm were obtained. Using SAS-EM with the power supply of 200 W, spherical PLA particles smaller than 1 μm were obtained. The particle size was able to be controlled in the range of 0.4 μm–1.0 μm, by adjusting the power supply of ultrasonic field, the system pressure and temperature.  相似文献   

16.
The influence of diverse factors on the supercritical fluid extraction (SFE) with supercritical CO2 (scCO2) of galanthamine from bulbs of Narcissus pseudonarcissus cv. Carlton was investigated. The parameters that were studied were CO2 density (temperature and pressure), flow rate and plant material particle size and pre-treatment. The highest yield (303 μg/g) was achieved by extracting 53–1000 μm particle-size powdered dried bulb material moistened with NH4OH (25%, v/v) at 70 °C, 220 bar (690 kg/m3) for 3 h. Other N. pseudonarcissus alkaloids such as O-methyllycorenine and haemanthamine were also obtained. N. pseudonarcissus alkaloids as free bases are highly soluble in CO2 at a high pH as opposed to the slightly soluble salt form in which they are generally found in plants. Therefore, plant material pre-treatment with a base is an essential step for galanthamine extraction. Scanning electron microscope (SEM) results also revealed that the desorption of N. pseudonarcissus alkaloids from the plant material rather than the solubility of the alkaloids in the scCO2 plays a major role in this scCO2 extraction. This extraction method has a good potential for industrial application.  相似文献   

17.
In this study, Enzyme activities of krill were characterized before and after lipid extraction by supercritical carbon dioxide (SC-CO2) and organic solvent, n-hexane and acetone. Krill SC-CO2 extraction was performed under the conditions of temperature range from 35 to 45 °C and pressure, 150–250 bar for 2.5 h with a constant flow rate of 22 g/min. Extraction yields of lipids increased with pressure and temperature. The digestive enzyme activities of protease, lipase and amylase of SC-CO2 treated krill residues were slightly decreased comparing to organic solvent, n-hexane and acetone treated residues. In SC-CO2 treated samples, all of the digestive enzymes showed slightly higher temperature stability. In the other hand the crude extracts of SC-CO2 and n-hexane treated krill samples showed almost same optimum pH and pH stability for each of the digestive enzymes. It was also found in SDS-PAGE that there are no significant differences in protein patterns of the crude extracts of untreated, SC-CO2, n-hexane and acetone treated krill indicating no denaturation of proteins.  相似文献   

18.
The supercritical antisolvent technology is used to crystallize paracetamol particles. Supercritical carbon dioxide (scCO2) is used as antisolvent. Ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of paracetamol in the solution was varied between 1 and 5 wt%, the composition of the ethanol/acetone solvent mixture between 50 and 90 wt% of ethanol and the operation pressure between 10 and 16 MPa at a temperature of 313 K. The most important finding is that the polymorph of paracetamol crystals can be adjusted between monoclinic and orthorhombic by varying the content of ethanol in the solution. The second important finding is that the occurrence of primary and secondary crystal structures can be explained solely by the overall supersaturation during the crystallization process. While X-ray diffraction was used to analyze the polymorph of the particles, their morphology was analyzed using scanning electron microscopy.  相似文献   

19.
Supercritical carbon dioxide (SC-CO2) extraction of lipid from Scenedesmus sp. for biodiesel production was investigated and compared to conventional extraction methods. The effect of biomass pre-treatment prior to extraction and extracting conditions, namely pressure in the range of 200–500 bar, temperatures in the range of 35–65 °C and CO2 flow rate in the range of 1.38–4.02 g min−1, on SC-CO2 extraction yield and quality of lipid were investigated. Three levels full factorial design of experiments and response surface methodology was used to model the system. A second order polynomial model was developed and used to predict the optimum conditions. Scaling up to a laboratory larger scale was also tested. The results indicated that SC-CO2 extraction was superior to other extraction techniques, but exhibited significant variations in yield with changes in operating parameters. In the developed model, it was found that the linear and quadratic terms of the temperature, as well as the interaction with pressure had a significant effect on lipid yield; whereas, their effect on lipid quality was insignificant. The best operating conditions, in the tested range, were 53 °C, 500 bar and 1.9 g min−1, in which lipid extraction yield of 7.41% (dry weight basis) was obtained. Negligible differences were observed when the fatty acid composition of SC-CO2 extracted lipid was compared to that extracted by the conventional methods. At the optimum conditions, SC-CO2 extraction was successfully scaled-up by eight-folds and the extracted lipid yield dropped by 16%.  相似文献   

20.
Carob pulp kibbles, a by-product of carob been gum production, was studied as a source of bioactive agents. Firstly, the carob kibbles were submitted to an aqueous extraction to extract sugars, and supercritical fluid extraction (SFE) was applied to the solid residue of that aqueous extraction, by using compressed carbon dioxide (SC-CO2) as the solvent and a mixture of ethanol and water (80:20, v/v) as a co-solvent. Pressure and temperature were studied in the ranges 15–22 MPa, and 40–70 °C. Particle diameter, and co-solvent percentage in ranges of 0.27–1.07 mm, and 0–12.4%, respectively, were also studied, as well as the flow rate of SC-CO2 between 0.28 and 0.85 kg h−1, corresponding, respectively, to 0.0062 and 0.0210 cm s−1 of superficial velocity. The extracts were characterised in terms of antioxidant capacity by DPPH method, and total phenolics content by the Folin–Ciocalteu method. The central composite non-factorial design was used to optimise the extraction conditions, using the Statistica, version 6 software (Statsoft). The best results, in terms of yield and antioxidant capacity, were found at 22 MPa, 40 °C, 0.27 mm particle size, about 12.4% of co-solvent and a flow rate of 0.29 kg h−1 of SC-CO2. The phenolics profile of the extracts obtained at these conditions was qualitatively evaluated by HPLC-DAD. The solid residue of the supercritical extraction was also studied showing to be a dietary fiber, which can be compared to Caromax™, a carob fiber commercialised by Nutrinova Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号