首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahesh N. Varma 《Fuel》2010,89(7):1641-31
Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined.  相似文献   

2.
The transesterification of soybean oil with supercritical methanol in a batch reactor with no added catalyst was investigated, studying the evolution of intermediate products (monoglycerides and diglycerides) as well as the conversion of triglycerides and the yield of fatty acid methyl esters and glycerol. Experiments were carried out in a temperature range of 250–350 °C (12–43 MPa) at reaction times of between 15 and 90 min for a methanol-to-oil molar ratio of 43:1. The best reaction conditions in this one-step supercritical process (325 °C/35 MPa and 60 min), in which triglyceride conversion was practically total, led to a maximum yield of fatty acid methyl esters of 84%. In these conditions an 8.1 wt% of monoglycerides and diglycerides remained in the medium. Although the use of more severe reaction conditions (longer reaction times and higher temperatures) reduced the content of these glycerides, the yield of methyl esters decreased due to their thermal decomposition.  相似文献   

3.
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%.  相似文献   

4.
Continuous production of fatty acid methyl esters (FAMEs) from corn oil was studied in a supercritical carbon dioxide (SC-CO2) bioreactor using immobilized lipase (Novozym 435) as catalyst. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the reaction conditions: pressure (11-35 MPa), temperature (35-63 °C), substrate mole ratio (methanol:corn oil 1-9) and CO2 flow rate (0.4-3.6 L/min, measured at ambient conditions). Increasing the substrate mole ratio increased the FAME content, whereas increasing pressure decreased the FAME content. Higher conversions were obtained at higher and lower temperatures and CO2 flow rates compared to moderate temperatures and CO2 flow rates. The optimal reaction conditions generated from the predictive model for the maximum FAME content were 19.4 MPa, 62.9 °C, 7.03 substrate mole ratio and 0.72 L/min CO2 flow rate. The optimum predicted FAME content was 98.9% compared to an actual value of 93.3 ± 1.1% (w/w). The SC-CO2 bioreactor packed with immobilized lipase shows great potential for biodiesel production.  相似文献   

5.
This study focused on gasification of biomass and a biomass model compound. Data are presented that show the presence of supercritical water enhances gasification efficiency, as it participates as both a solvent and a reactant. It is established that biomass gasification efficiencies are in the same range for all types of biomass. The thermodynamic changes of state are functions of elemental composition, not biomass species. The oxidation state of carbon atom of biomass is a key variable in determining the changes in enthalpy during both conventional combustion and supercritical water gasification. The oxidation state of the feed (together with the reaction conditions that influence the degree to which water participates as a reactant) also determines the vapor product composition.Decomposition reactions to vapor products are rapid and complete at high temperature (?550 °C), catalytic mediation is not required. Temperature and residence time are important operating parameters for SCW gasification. Less important are the pressure of gasification (in the range of 40-67 MPa) and the presence of catalyst. The vapor yield, gas composition, the carbon and hydrogen balance of SCW gasification are functions of gasification temperature, residence time and biomass load (concentration).  相似文献   

6.
The conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor was investigated. Three-step methanolysis of waste oil was conducted using three columns packed with 3 g of immobilized Candida antarctica lipase. A mixture of waste oil and 1/3 molar equivalent of methanol against total fatty acids in the oil was used as substrate for the first-step reaction, and mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-step reactions, respectively. Ninety percent of waste oil was converted to the corresponding methyl esters (ME) by feeding substrate mixtures into the first, second, and third reactors at flow rates of 6, 6 and 4 mL/h, respectively. We also attempted one-step methanolysis of waste oil. When a mixture of waste oil and 90% ME-containing eluate (1∶3, wt/wt) and an equimolar amount of methanol against total fatty acids in the waste oil was fed into a reactor packed with 3 g of immobilized C. antarctica lipase at a flow rate of 4 mL/h, the ME content in the eluate reached 90%. The immobilized biocatalyst could be used for 100 d in the two reaction systems without significant decrease in its activity. Waste oil contained 1980 ppm water and 2.5% free fatty acids, but these contaminants had little influence on enzymatic production of biodiesel fuel.  相似文献   

7.
In the present study, a mathematical modeling for extraction of oil from clove buds using supercritical carbon dioxide was performed. Mass transfer is based on local equilibrium between solvent and solid. The model was solved numerically, and model estimation was validated using experimental data. For optimization, the clove oil equilibrium constant between solid and supercritical phase was determined by a theoretical method using fugacity concept, consequently the genetic algorithm for obtaining optimal operational conditions was used. The optimal conditions which obtained the highest amount of clove oil were pressure of 10 MPa and temperature of 304.2 K.  相似文献   

8.
In the present work, the transesterification of non-edible oil with methanol and ethanol is studied. The reactor phase transitions are directly observed in a double windowed cylindrical reactor and the conversion to fatty esters is measured. The optimization of the process conditions was carried out based on a statistical design of experiments where the key process variables were studied over different ranges to obtain a reliable model for the efficiency of the reaction as a function of reaction time, temperature, pressure and alcohol to oil molar ratio. From direct observations and the modeling of the phase behavior, a better understanding of the supercritical alcohol transesterification process is obtained as well as the confirmation of the phase equilibrium predictions based on the GCA-EOS model.  相似文献   

9.
Continuous supercritical carbon dioxide processing of palm oil   总被引:2,自引:0,他引:2  
Crude palm oil was processed by continuous supercritical carbon dioxide. The process reduces the contents of free fatty acids, monoglycerides and diglycerides, certain triglycerides, and some carotenes. The refined palm oil from the process has less than 0.1% free fatty acids, higher carotene content, and low diglycerides. Solubility of palm oil in supercritical carbon dioxide increased with pressure. A co-solvent improves the refining process of palm oil.  相似文献   

10.
The effect of reaction conditions on the extent of conversion in hydrolysis of blackcurrant oil was investigated. The enzyme used was Lipozyme, a lipase from Mucor miehei immobilised on macroporous anionic resin. The reaction was carried out in a continuous flow reactor at 10- and 30-50°C with carbon dioxide saturated with oil and water (55-100%) flowing up through the enzyme bed. Analysis of product composition indicated unfavourable hydrodynamics with significant mixing in the reactor when solvent interstitial velocity was lower than , while above this velocity value the flow pattern was near to plug flow. Lipase stability was very good with no activity reduction observed during a long-term experiment. The reaction rate was a function of the ratio of enzyme load to solvent volumetric flow rate. A complete hydrolysis of oil was achieved in the experiments carried out with the enzyme load of and CO2 flow rate of 0.4-. The effects of pressure (10-) and temperature (30-40°C) on the reaction rate were small, and the effects of CO2 saturation with water and of enzyme distribution in the reactor were negligible. Lipozyme displayed specificity towards linolenic acids; the release of α-linolenic acid was faster and that of γ-linolenic acid slower than the release of other constituent acids present in blackcurrant oil.  相似文献   

11.
The transesterification of soybean oil with glycerol, 1,2-propanediol, and methanol by an immobilized lipase in flowing supercritical carbon dioxide for the synthesis of monoglycerides is described. A lipase from Candida antarctica was used to catalyze the reaction of soybean oil with glycerol, 1,2-propanediol, ethylene glycol, and methanol. Reactions were performed in supercritical carbon dioxide at a density of 0.72 g/L and at a flow rate of 6 μL/min (expanded gas). The substrates were added at flows ranging from 2.5 to 100 μL/min. Monoglycerides were obtained at up to 87 wt%, and fatty acid methyl esters at nearly 100 wt%. The reactivity of the alcohols paralleled the solubility of the substrate in liquid carbon dioxide. Glycerol has the slowest reaction rate, only 2% of that of methanol.  相似文献   

12.
Characterization and supercritical carbon dioxide extraction of walnut oil   总被引:9,自引:0,他引:9  
Walnut (Juglans regia L.) oil was extracted with compressed carbon dioxide (CO2) in the temperature range of 308 to 321 K and in the pressure range of 18 to 23.4 MPa. The influence of particle size was also studied at a superficial velocity of 0.068 cm/s, within a tubular extractor of 0.2 L capacity (cross-sectional area of 16.4 cm2). FFA, sterol, TAG, and tocopherol compositions were not different from those of oil obtained with n-hexane. The main FA was linoleic acid (56.5%), followed by oleic acid (21.2%) and linolenic acid (13.2%). The main TAG was LLL (linoleic, linoleic, linoleic) (24.4%), followed by OLL (oleic, linoleic, linoleic) (19.6%) and LLLn (linoleic, linoleic, linolenic) (18.4%). The main component of sterols was β-sitosterol (85.16%), followed by campesterol (5.06%). The amount of cholesterol was low (0.31 and 0.16% for oils extracted by n-hexane and supercritical fluid extraction, respectively. The CO2-extracted oil presented a larger amount of tocopherols (405.7 μg/g oil) when compared with 303.2 μg/g oil obtained with n-hexane. Oxidative stability determined by PV and the Rancimat method revealed that walnut oil was readily oxidized. Oil extracted by supercritical CO2 was clearer than that extracted by n-hexane, showing some refining. A central composite, nonfactorial design was used to optimize the extraction conditions using the software Statistica, Version 5. The best results were found at 22 MPa, 308 K, and particle diameter (Dp) −0.1 mm.  相似文献   

13.
Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide   总被引:4,自引:0,他引:4  
The effect of pressure, temperature, and CO2 flow rale on the extent of conversion and the product composition in the enzyme-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2) was investigated using lipase from Mucor miehei immobilized on macroporous anionic resin (Lipozyme IM). Reactions were carried out in a continuous flow reactor at 10, 24, and 38 MPa and 35 and 55°C. Supercritical fluid chromatography was used to analyze the reaction products. A conversion of 63–67% (triglyceride disappearance) was obtained at 24–38 MPa. Mono-and diglyceride production was minimum at 10 MPa and 35°C. Monoglyceride production was favored at 24 MPa. The amount of product obtained was higher at 24–38 MPa due to enhanced solubility in SCCO2. Complete hydrolysis of oil should be possible by increasing the enzyme load and/or decreasing the quantity of the oil substrate. There was a drop in triglyceride conversion over a 24-h reaction time at 38 MPa and 55°C, which may be an indication of loss of enzyme activity. Pressure, temperature, and CO2 flow rate are important parameters to be optimized in the enzyme-catalyzed hydrolysis of canola oil in SCCO2 to maximize its conversion to high-value products.  相似文献   

14.
The use of supercritical conditions for the production of biodiesel from both vegetables oils and waste-oils may be of great industrial interest because it can be carried out without those catalysts necessary in the conventional transesterification process, therefore avoiding a complex separation between the product and the catalyst. However, the use of supercritical alcohol requires higher operating temperatures and pressures. In this work, CO2 was added to the reaction mixture in order to reduce the operating conditions (temperature, pressure and molar ratio of alcohol to vegetable oil). The novelty of using CO2 may have two advantages: a possible combination of supercritical CO2 extraction of the oil and its subsequent transesterification reaction without CO2 depressurization, and a reduction of the supercritical temperature and pressure of the mixture. The effects of temperature (280-350 °C), pressure (140-280 bar), methanol-to-oil molar ratio (20-30), CO2-to-methanol molar ratio (0.05-0.2) and residence time (0-45minutes) on the yield of methyl esters (biodiesel) were studied in a batch reactor, obtaining in all cases a relatively low increase in the yield when CO2 was present in the medium. The yields of biodiesel were tested with three vegetable oils used as model compounds (palm, sunflower and borage), obtaining similar results.  相似文献   

15.
The supercritical carbon dioxide extraction was applied to obtain essential oil from Pogostemon cablin in this work. Effect of extraction parameters including temperature, pressure, extraction time and particle size on extraction yield was investigated, and the response surface methodology with a Box-Behnken Design was used to achieve the optimized extraction conditions. The maximum yield of essential oil was 2.4356% under the conditions of extraction temperature 47℃, pressure 24.5 MPa and extraction time 119 min. Moreover, based on the Brunauer-Emmett-Teller theory of adsorption, a mathematical modeling was performed to correlate the measured data. The model shows a function relationship between extraction yield and time by a simple equation with three significantly adjustable parameters. These model parameters have been optimized through simulated annealing algorithm. The predicted data from the mathematical model show a good agreement with the experimental data of the different extraction parameters.  相似文献   

16.
Vivek Rathore  Giridhar Madras   《Fuel》2007,86(17-18):2650-2659
Biodiesel is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. The synthesis of biodiesel from edible oils like palm oil and groundnut oil and from crude non-edible oils like Pongamia pinnata and Jatropha curcas was investigated in supercritical methanol and ethanol without using any catalyst from 200 to 400 °C at 200 bar. The variables affecting the conversion during transesterification, such as molar ratio of alcohol to oil, temperature and time were investigated in supercritical methanol and ethanol. Biodiesel was also synthesized enzymatically with Novozym-435 lipase in presence of supercritical carbon dioxide. The effect of reaction variables such as temperature, molar ratio, enzyme loading and kinetics of the reaction was investigated for enzymatic synthesis in supercritical carbon dioxide. Very high conversions (>80%) were obtained within 10 min and nearly complete conversions were obtained at within 40 min for the synthesis of biodiesel in supercritical alcohols. However, conversions of only 60–70% were obtained in the enzymatic synthesis even after 8 h.  相似文献   

17.
A SrRuO3 deposition process using supercritical fluid deposition (SCFD) was designed for fabricating electrodes in ferroelectric random access memory (FeRAM). To make stoichiometric SrRuO3 film (Sr:Ru = 1:1), deposition rates of component materials, SrO and RuO2, must be balanced, and thus, we investigated the deposition kinetics of the component materials. The deposition rate of SrO was found to be less than that of RuO2 in all cases, and SrO particle generation during deposition was problematic. Both of these issues could be overcome by controlling the temperature and O2 concentration. For SrRuO3 deposition, the Sr-/Ru- precursor concentration ratio was the dominant factor to control the composition of the film. Stoichiometric SrRuO3 film can be formed by increasing the Sr-/Ru- precursor sconcentration ratio to 6. Our deposited film satisfied three major requirements for a FeRAM electrode: perovskite crystal structure, low resistivity, and conformal deposition onto the trenches (aspect ratio of 5).  相似文献   

18.
José Maçaira 《Fuel》2011,90(6):2280-2288
Fatty acid methyl esters (biodiesel) were produced by the transesterification of triglycerides with compressed methanol (critical point at 240 °C and 81 bar) in the presence of solid acids as heterogeneous catalyst (SAC-13). Addition of a co-solvent, supercritical carbon dioxide (critical point at 31 °C and 73 bar), increased the rate of the supercritical alcohols transesterification, making it possible to obtain high biodiesel yields at mild temperature conditions. Experiments were carried out in a fixed bed reactor, and reactions were studied at 150-205 °C, mass flow rate 6-24 ml/min at a pressure of 250 bar. The molar ratio of methanol to oil, and catalyst amount were kept constant (9 g). The reaction temperature and space time were investigated to determine the best way for producing biodiesel. The results obtained show that the observed reaction rate is 20 time faster than conventional biodiesel production processes. The temperature of 200 °C with a reaction time of 2 min were found to be optimal for the maximum (88%) conversion to methyl ester and the free glycerol content was found below the specification limits.  相似文献   

19.
Sorption and diffusion of supercritical carbon dioxide (SCCO2) into polysulfone (PSF) from 313 K and 20 MPa to 333 K and 40 MPa were investigated in this study. A simple gravimetric method was used to measure the mass gain of SCCO2 in PSF, and the Fick's diffusion model was applied to describe the desorption process. The sorption amount, the sorption diffusivity under supercritical states, and the desorption diffusivity at ambient conditions are presented. Comparisons of the sorption amounts and diffusivities of CO2 for polymers of polycarbonate and PSF are discussed according to the interactions between gas and polymers. The morphology change and plasticization effect attributed to gas sorption in PSF were studied. Effects of glass‐transition temperature and yielding stress for PSF and other polymers were used to describe the difference in their diffusivities for the sorption and desorption processes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 474–482, 2004  相似文献   

20.
Enzymatic alcoholysis of cod liver oil, with an immobilized lipase, was carried out in supercritical carbon dioxide. The enzyme was catalytically active under the experimental conditions used. The reaction medium was investigated to preferentially extract ethyl esters, synthesized during the course of the experiment, from the unconverted cod liver oil substrate and side-products. The effect of pressure changes on the amount of tri-, di-, and monoglycerides and ethyl esters, present in both the extract and the remaining lipid residue, was determined. Furthermore, the fatty acid compositions of the lipid classes were analyzed, and the relative amounts of both eicosapentaenoic acid and docosahexaenoic acid to palmitic acid were determined. The results show that it is possible to preferentially extract the synthesized ethyl esters at low pressures. The extract collected at 9 MPa contained 64 g ethyl esters/100 g extract, while the total amount of all other lipid classes detected was 19 g/100 g extract. As the pressure was increased, the relative amount of the other lipid classes detected in the extract, especially triglycerides, was enhanced. The relative amounts of both eicosapentaenoic acid and docosahexaenoic acid to palmitic acid increased for some lipid classes in the extract. This increase was most pronounced for the monoglyceride lipid class. The integration of biocatalysis and product fractionation, applied in this study, suggests that the potential for biocatalysis in industrial processes is considerably wider than had been thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号