首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Supercritical antisolvent (SAS) precipitation has been successfully used in the micronization of several compounds. Nevertheless, the role of high-pressure vapor–liquid equilibria, jet fluid dynamics and mass transfer in determining particle size and morphology is still debated. In this work, CO2 has been adopted as supercritical antisolvent and elastic light has been used to acquire information on jet fluid dynamics using thin wall injectors for the investigation of the liquid solvents acetone and DMSO at operating conditions of 40 °C in the pressure range between 6 and 16 MPa. The results show that two-phase mixing after jet break-up is the phenomenon that characterizes the jet fluid dynamics at subcritical conditions. When SAS is performed at supercritical conditions a transition between multi-phase and single-phase mixing is observed by increasing the operating pressure. Single-phase mixing is due to the very fast disappearance of the interfacial tension between the liquid solvent and the fluid phase in the precipitator. The transition between these two phenomena depends on the operating pressure, but also on the viscosity and the surface tension of the solvent. Indeed, single-phase mixing has been observed for acetone very near the mixture critical point, whereas DMSO showed a progressive transition for pressures of about 12 MPa.In the second part of the work, a solute was added to DMSO to study the morphology of the microparticles formed during SAS precipitation at the different process conditions, to find a correlation between particle morphology and the observed jet. Expanded microparticles were obtained working at subcritical conditions; whereas spherical microparticles were obtained operating at supercritical conditions up to the pressure where the transition between multi- and single-phase mixing was observed. Nanoparticles were obtained operating far above the mixture critical pressure. The observed particle morphologies have been explained considering the interplay among high-pressure phase equilibria, fluid dynamics and mass transfer during the precipitation process.  相似文献   

2.
The supercritical antisolvent technology is used to crystallize paracetamol particles. Supercritical carbon dioxide (scCO2) is used as antisolvent. Ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of paracetamol in the solution was varied between 1 and 5 wt%, the composition of the ethanol/acetone solvent mixture between 50 and 90 wt% of ethanol and the operation pressure between 10 and 16 MPa at a temperature of 313 K. The most important finding is that the polymorph of paracetamol crystals can be adjusted between monoclinic and orthorhombic by varying the content of ethanol in the solution. The second important finding is that the occurrence of primary and secondary crystal structures can be explained solely by the overall supersaturation during the crystallization process. While X-ray diffraction was used to analyze the polymorph of the particles, their morphology was analyzed using scanning electron microscopy.  相似文献   

3.
The supercritical antisolvent technology is used to precipitate polyvinylpyrrolidone (PVP) particles and crystallise ibuprofen sodium (IS) crystals separately and in the form of solid dispersion together. Supercritical carbon dioxide (scCO2) is used as antisolvent. For PVP particle generation, ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 wt% and 1.5 wt%, the operation pressure between 10 MPa and 30 MPa and the composition of ethanol/acetone solvent mixtures between 100 wt% and 0 wt% of ethanol at a constant temperature of 313 K. Furthermore, the mean molecular weight of the polymer was varied between 40 kg mol−1, 360 kg mol−1 and 1300 kg mol−1. An increase of the content of the poor solvent acetone in the initial solvent mixture as well as the usage of PVP with a higher molecular weight, leads to a significant decrease in mean particle size. At all the investigated parameters always fully amorphous PVP powder precipitates. For IS, only ethanol was used as the solvent, the initial IS concentration in the solution was varied between 1 wt% and 3 wt% and the operation pressure between 10 MPa and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallised IS crystals. Irrespective of the parameters used, always the same polymorphic form of ibuprofen sodium is produced. The solid dispersions were generated at different compositions of PVP to IS and with two different molecular weights of PVP at otherwise constant conditions. Fully amorphous solid dispersions consisting of IS and PVP together were generated at different ratios of PVP to IS.The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “non-ideal” solutes. Furthermore, the study of the “unconventional” SAS parameters, molecular weight and solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. Next to the investigation into the behaviour of both solutes separately, fully amorphous solid dispersions consisting of IS and PVP together were generated. While X-ray diffraction was used to analyze the crystalline structure of the particles, respectively, solid dispersions, their morphology was analysed using scanning electron microscopy (SEM).  相似文献   

4.
Anti-solvent precipitation of xylans and mannans from dimethylsulfoxide (DMSO) or DMSO/water mixtures, and subsequent drying with supercritical carbon dioxide (scCO2) were developed into a useful technique for preparing spherical hemicellulose micro-particles. Depending on the type of hemicellulose, water content of DMSO, precipitation pressure and temperature, the particle size can be adjusted within a wide range from less than 0.1 to more than 5 μm. For example, fast super-saturation which can be achieved by applying supercritical conditions results in the formation of very small particles as mass transfer between the solvent DMSO and anti-solvent scCO2 is reduced to a minimum.Anti-solvent precipitation from aqueous DMSO (e.g., 10% water) allows for processing distinctly larger amounts of hemicelluloses compared to pure DMSO without the necessity of increasing the precipitation pressure. The formation of an additional inert aqueous phase increases the mass transfer resistance, which results in the formation of larger, stable agglomerates.Curiepoint pyrolysis GC/MS, gel permeation chromatography (GPC) and analysis of the monosaccharide composition of both the parent hemicellulosic material and the corresponding precipitates demonstrated that hemicelluloses can be purified from residual lignin by supercritical anti-solvent precipitation with carbon dioxide without altering the structure of the biopolymers.  相似文献   

5.
Saponins are surfactants that reduce the surface tension of aqueous solutions, besides having pharmacological actions. In order to extract and fractionate saponins from Pfaffia glomerata roots and Hebanthe eriantha roots using supercritical technology, fractionated extracts were obtained from a sequential process in fixed bed using supercritical CO2 (scCO2), ethanol, and water as solvents. All extractions were carried out in four sequential steps, at 50 °C and 300 bar. In the first step, pure scCO2 was used as solvent, while (a) scCO2/etanol (70:30, w/w); (b) ethanol, and (c) ethanol/water (70:30, v/v) were used as solvents in the three subsequent steps. The extracts were analyzed by thin layer chromatography (TLC) and surface tension. The extraction yields of the four steps were 0.16, 0.55, 1.00, and 6.90% for P. glomerata roots, and 0.17, 0.58, 0.89, and 28% for H. eriantha roots, showing a predominance of high polarity compounds in these species. TLC analysis showed that the extraction process was selective according to the polarity of the solvent, and provided extracts containing different saponins, except for scCO2 extraction. The extracts from the extraction using ethanol + scCO2 (Step 2) showed the greatest ability to reduce the surface tension of water from 72 mN m−1 (pure water) to 25 mN m−1, suggesting that this step was the best for extraction of less polar saponins in the extracts. The critical micelle concentration (CMC) values were approximately 2 and 8 g L−1 for P. glomerata and H. Eriantha, respectively. These results confirmed the efficacy of the extraction process under study.  相似文献   

6.
The aim of this research was to investigate the capability of using supercritical CO2 (scCO2) as reagent and solvent in the synthesis of pharmaceutical cyclodextrinyl derivatives in smooth reaction conditions. In this way we have followed the kinetics of a synthesis which was previously realized in DMF, by using tandem Staudinger-Aza-Wittig (S.A.W.) reaction in scCO2 at 200 bars pressure in a 100 mL reactor. The results show that the reaction in scCO2 showed a second order kinetics with the yield of 92%.  相似文献   

7.
Vapor–liquid equilibria of the binary supercritical carbon dioxide (scCO2) + oleic acid, scCO2 + palm oil, and scCO2 + palm kernel oil were measured at a wide range of temperatures from 333.2 to 373.2 K and pressures from 8.5 to 35 MPa in a circulation-type phase equilibrium apparatus. The samples from liquid and vapor phases were analyzed using UV–vis spectrometer and a liquid hold-up equipment. The phase equilibrium data were correlated with Peng–Robinson Equation of State (PR-EOS) using Wong–Sandler mixing rule and optimum values of binary interaction parameters were determined. The relative deviation between experimental data and predicted data was in the range of 6.9–8.7%, suggesting that the PR-EOS with Wong–Sandler mixing rule is capable of predicting the vapor–liquid equilibria of oleic acid + scCO2, palm oil + scCO2, and palm kernel oil + scCO2.  相似文献   

8.
The influence of diverse factors on the supercritical fluid extraction (SFE) with supercritical CO2 (scCO2) of galanthamine from bulbs of Narcissus pseudonarcissus cv. Carlton was investigated. The parameters that were studied were CO2 density (temperature and pressure), flow rate and plant material particle size and pre-treatment. The highest yield (303 μg/g) was achieved by extracting 53–1000 μm particle-size powdered dried bulb material moistened with NH4OH (25%, v/v) at 70 °C, 220 bar (690 kg/m3) for 3 h. Other N. pseudonarcissus alkaloids such as O-methyllycorenine and haemanthamine were also obtained. N. pseudonarcissus alkaloids as free bases are highly soluble in CO2 at a high pH as opposed to the slightly soluble salt form in which they are generally found in plants. Therefore, plant material pre-treatment with a base is an essential step for galanthamine extraction. Scanning electron microscope (SEM) results also revealed that the desorption of N. pseudonarcissus alkaloids from the plant material rather than the solubility of the alkaloids in the scCO2 plays a major role in this scCO2 extraction. This extraction method has a good potential for industrial application.  相似文献   

9.
The aim of this work was to study the phase behavior of systems involving carbon dioxide (CO2), fatty acid ethyl esters (ethyl oleate, ethyl stearate and ethyl palmitate) and acetone at high pressures. The phase behavior involving these components is an important step regarding the design and optimization of industrial processes based on supercritical conditions, such as biodiesel production and fatty esters fractionation involving supercritical and/or pressurized solvents. In addition, supercritical CO2 can offer an interesting alternative for glycerol separation in water-free biodiesel purification processes. The binary systems investigated in this work were CO2 + ethyl oleate, and CO2 + ethyl stearate and these were compared with the CO2 + ethyl palmitate system. The ternary CO2 + ethyl palmitate + acetone was also investigated at two different ethyl palmitate to acetone molar ratios of (1:1) and (1:3). The static synthetic method using a variable-volume view cell was employed to obtain the experimental data in the temperature range of 303.15–353.15 K. Vapor–liquid (VL), liquid–liquid (LL) and vapor–liquid–liquid (VLL) phase transitions were observed in these systems. In the binary systems, the solubility increased with the presence of unsaturation and decreased with the number of carbon atoms in the fatty ester chain. Addition of acetone as well as ethanol eliminated the liquid–liquid immiscibility and reduced the pressure transitions, therefore increasing the solubility of the ester in supercritical CO2. The experimental data sets for the binary and ternary systems were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and Wong-Sandler (PR-WS) mixing rule. Both models showed good performance in the phase equilibrium correlations and in predictions for the binary and ternary systems.  相似文献   

10.
Adsorption kinetics of four volatile organic compounds (VOCs) (acetone, toluene, n-hexane and n-decane) on activated carbon under supercritical carbon dioxide (scCO2) conditions was studied. Breakthrough curve measurements of VOCs in scCO2 were performed with a fixed bed method for activated carbon (ca. mean particles diameter: 100 μm, specific surface area: 1300 m2/g and mean pore diameter: 0.687 nm, respectively). The measured breakthrough curves could be correlated with a kinetic model by using only one fitting parameter (effective diffusion coefficient in pore) within 10% of average relative deviation. The determined effective diffusion coefficient decreased with decreasing temperatures and increasing pressures at all conditions. Additionally, a generalized model of the determined effective diffusion coefficients was developed, and the proposed model could satisfactorily describe temperature and pressure dependence at all VOCs conditions.  相似文献   

11.
Melia azedarach L. is a plant with wide use in folk medicine since it contains many bioactive compounds of interest. The present study aimed to extract bioactive compounds from M. azedarach fruits by a sequential process in fixed bed using various solvent mixtures. Extractions were performed at 50 °C and 300 bar in four sequential steps using supercritical CO2 (scCO2), scCO2/ethanol, pure ethanol, and ethanol/water mixture as solvents, respectively. The efficacy of the extraction process was evaluated by extraction yield and kinetics, and analysis of extracts by: (1) thin layer chromatography (TLC), (2) phenolics content, (3) reduction of surface tension of water, (4) gas chromatography (GC–MS), (5) electrospray ionization mass spectrometry (ESI–MS) and (6) antiviral activity. The overall extraction yield reached 45% and TLC analysis showed extracts with different composition. extract obtained from CO2/ethanol mixture (SCEE) exhibited the greatest ability to reduce surface tension of water from 72.4 mN m−1 [1] of pure water to 26.9 mN m−1 of an aqueous solution of 40 g L−1. The highest phenolics contents were observed in both the hydroalcoholic extract and scCO2/ethanolic extract. Volatile oils were not detected in the supercritical extracts by GC–MS. MS analyses identified the fatty acids: linoleic, palmitic and myristic acid in the supercritical extract (SCE), and the phenolics: caffeic acid and malic acid in the other extracts. In addition, SCE and SCEE extracts showed significant inhibition percentage against Herpes Simplex Virus Type 1. The extraction process proposed in the present study produced extracts with significant potential for application in food and pharmaceutical industries.  相似文献   

12.
Poly(vinyl alcohol)–polyethylene glycol, PVA–PEG, blended membrane were prepared using supercritical fluid assisted phase-inversion method, in which scCO2 was used as the anti-solvent. Poly(vinyl alcohol) was utilized as the main polymer, polyethylene glycol as the additive, and dimethyl sulfoxide (DMSO) as the solvent of these polymers. Taguchi method was used to investigate the effect of some operating parameters on the morphology of the membranes. The L16 orthogonal array was selected under the following conditions: pressure (100, 135, 165 and 200 bar), temperature (40, 45, 50 and 55 °C) and PEG weight percent (0, 0.33, 0.66, and 1%). Total polymer concentration of solutions in all experiment was constant at 10% (w/w). The morphology of the obtained porous membranes was characterized by scanning electron microscopy. Through changing the conditions in each experiment, the average pore diameter changed between 3.75 and 12.2 μm. Results from analysis of variance (ANOVA) indicate that PEG concentration was the most significant factor on the average pore size of prepared membranes by 78.7%. This is the first work announcing preparation of PVA–PEG membrane using supercritical CO2.  相似文献   

13.
Microparticles of ethyl cellulose (EC) and amoxicillin (AMC) have been precipitated by a supercritical antisolvent process (SAS) using CO2 as the antisolvent and a mixture of dichloromethane (DCM) and dimethyl sulfoxide (DMSO) as solvents. Combinations of three temperatures (308, 323 and 333 K) and four pressures (100, 150, 200 and 250 bar) were assessed in the vessel and the rest of the variables were held constant (i.e. CO2 flow rate, sample flow rate, washing time, nozzle diameter and the amoxicillin:ethyl cellulose ratio). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and elemental analysis (EA) were used to determine the particle size and shape and to confirm the presence of both compounds in the resulting precipitates. In most cases, mixed amoxicillin and ethyl cellulose particles were produced with sizes in the micrometer range. Pressure and temperature effects on the co-precipitation were investigated. The release behaviour of the microparticles precipitated by the SAS process was evaluated in two biological fluids – simulated gastric and simulated intestinal fluids. Co-precipitated materials allowed a slower drug release rate than pure drug.  相似文献   

14.
This work aims to study supercritical anti-solvent (SAS) micronization of lutein derived from marigold flowers. Lutein solution in dichloromethane (DCM) or ethanol was atomized into the stream of supercritical carbon dioxide (SC-CO2) through a concentric nozzle in a pressurized vessel. The effects of pressure and SC-CO2 flow rate on morphology, mean particle size (MPS) and particle size distribution (PSD) were investigated. The reduction in lutein MPS from 202.3 μm of unprocessed lutein to 1.58 μm and 902 nm could be achieved by SAS micronization using DCM and ethanol, respectively. In both solvent systems, no significant effects of pressure and SC-CO2 flow rate on particle morphology were observed. However, pressure was found to have a significant effect on MPS and PSDs of lutein particles.  相似文献   

15.
We have developed a new apparatus to dynamically generate supercritical CO2 (scCO2) bubbles in water using a water hammer facility by efficiently concentrating water energy. We measured the internal and external pressures of a CO2 bubble covered with a rubber membrane using pressure transducers, and observed the bubble's oscillations by a high-speed video camera. We evaluated the maximum duration of the scCO2 for conditions 60 μs in experiments. We performed numerical simulations using the Rayleigh–Plesset equation by substituting the experimental external pressure profiles of the bubble and confirmed that numerical results agreed with the experimental internal pressure. Moreover, in the minimum external pressure condition where we experimentally achieved the condition of scCO2 in the bubble for 16 μs by water hammer, we obtained the maximum duration of scCO2 conditions up to 55 μs by numerical simulations assuming isotropic compression.  相似文献   

16.
This work explored the potential of subcritical liquids and supercritical carbon dioxide (CO2) in the recovery of extracts containing phenolic compounds, antioxidants and anthocyanins from residues of blueberry (Vaccinium myrtillus L.) processing. Supercritical CO2 and pressurized liquids are alternatives to the use of toxic organic solvents or extraction methods that apply high temperatures. Blueberry is the fruit with the highest antioxidant and polyphenol content, which is present in both peel and pulp. In the extraction with pressurized liquids (PLE), water, ethanol and acetone were used at different proportions, with temperature, pressure and solvent flow rate kept constant at 40 °C, 20 MPa and 10 ml/min, respectively. The extracts were analyzed and the highest antioxidant activities and phenolic contents were found in the extracts obtained with pure ethanol and ethanol + water. The highest concentrations of anthocyanins were recovered with acidified water as solvent. In supercritical fluid extraction (SFE) with CO2, water, acidified water, and ethanol were used as modifiers, and the best condition for all functional components evaluated was SFE with 90% CO2, 5% water, and 5% ethanol. Sixteen anthocyanins were identified and quantified by ultra performance liquid chromatography (UPLC).  相似文献   

17.
A new approach is proposed to select operating temperature and pressure for supercritical antisolvent particle precipitation based on solubility parameter calculated by group contribution methods and using only the critical properties of the solvent. Solubility parameters are also used to choose the most suitable organic solvent for a given application. Supercritical antisolvent precipitation operating conditions of 36 systems are investigated including 8 organic solvents (methanol, ethanol, acetone, DMSO, DCM, chloroform, NMP and acetic acid) and 6 solid solutes (atenolol, tartaric acid, flunisolide, paracetamol, amoxicillin and cholesterol) in the temperature and pressure ranges of 25⿿85 °C and 50⿿250 bar. The results show a good agreement between the experimental and calculated data for these systems. Although particle precipitation depends on several parameters such as mass-transfer rates and hydrodynamics, the focus of this work is on the role of thermodynamics to indicate the preliminary conditions for a successful antisolvent precipitation process. Validation and results of this new approach suggest that it can be a useful tool for a qualitative and completely predictive evaluation of supercritical antisolvent particle precipitation in a cheaper way than carrying out experimental runs.  相似文献   

18.
In this study, Enzyme activities of krill were characterized before and after lipid extraction by supercritical carbon dioxide (SC-CO2) and organic solvent, n-hexane and acetone. Krill SC-CO2 extraction was performed under the conditions of temperature range from 35 to 45 °C and pressure, 150–250 bar for 2.5 h with a constant flow rate of 22 g/min. Extraction yields of lipids increased with pressure and temperature. The digestive enzyme activities of protease, lipase and amylase of SC-CO2 treated krill residues were slightly decreased comparing to organic solvent, n-hexane and acetone treated residues. In SC-CO2 treated samples, all of the digestive enzymes showed slightly higher temperature stability. In the other hand the crude extracts of SC-CO2 and n-hexane treated krill samples showed almost same optimum pH and pH stability for each of the digestive enzymes. It was also found in SDS-PAGE that there are no significant differences in protein patterns of the crude extracts of untreated, SC-CO2, n-hexane and acetone treated krill indicating no denaturation of proteins.  相似文献   

19.
Glucose oxidase (GOX) was immobilized on polyurethane/polypyrrole (PU/PPY) composite foam via supercritical fluid immobilization (SFI) towards the preparation of biosensors. Buffer solution was used as the immobilization medium along with scCO2. To provide insight into the relation between the scCO2 and the GOX-buffer solution, the GOX-buffer solutions were subjected to scCO2 and the protein amounts of the GOX-buffer solutions before and after scCO2 exposure were determined at 80, 100 and 150 bar and 30, 40 and 50 °C for an exposure time of 24 h. The protein amount in GOX-buffer solution decreased in all cases after exposure to scCO2. The lowest and highest loss in GOX amounts observed were 2.9 and 36.4 μg at 80 bar, 30 °C and 100 bar, 50 °C, respectively. The effects of immobilization pressure (80, 100 and 150 bar), temperature (30, 40 and 50 °C) and time (4, 24 and 72 h) on the activities of the GOX-immobilized PU/PPY composites were investigated. At 30 °C immobilization temperature, the activity values of the GOX-immobilized PU/PPY composites were slightly increased as the pressure was increased from 80 to 100 bar. Further increase in immobilization pressure from 100 to 150 bar at 30 °C caused a decrease in the activity values. At 40 °C immobilization temperature, increasing the immobilization pressure from 80 to 100 bar did not provide an increase in activity values, but further increase to 150 bar caused a decrease in the activity values. At 100 bar immobilization pressure, decrease in temperature enhanced the activity values of the samples. When immobilization was performed via SFI, the activity values were doubled compared to the immobilization at atmospheric conditions. Among all the immobilization pressures and temperatures investigated, both the highest activity (U/cm2) and the highest specific activity (U/mg) were obtained for the samples processed at 100 bar, 30 °C.  相似文献   

20.
The impregnation of organic compounds in polymeric materials using supercritical carbon dioxide (scCO2) is a well-known technique, which is currently used in drug/polymer formulation. In this work, near critical and supercritical impregnation of thymol in linear low-density polyethylene (LLDPE) films was done in order to develop a new technique for preparation of active polymers to be used as food packages. The properties of thymol as a natural antimicrobial and antioxidant agent have motivated this study about the assessment of its migration from the polymer to different food simulant. Impregnation assays of thymol in LLDPE films were done in a high-pressure cell, where pure thymol was solubilized in supercritical carbon dioxide at 313 K and pressures varying from 7 to 12 MPa. This procedure allowed the preparation of plastic films with thymol concentrations ranged between 5100 and 13,200 ppm. Migration tests showed that the pressure applied during the impregnation procedure is a key parameter that affects the content of the active compound into the polymer, since thymol solubility in scCO2 and absorption phenomena in the polymer increased with the pressure. The correlation between experimental data and a phenomenological transfer model allowed the estimation of the diffusion coefficient of thymol in LLDPE, which was ranged from 7.5 × 10−13 to 3.0 × 10−12 m2 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号