首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline Al–Fe alloys containing 60–85 at.% Al were produced by consolidation of mechanically alloyed nanocrystalline or amorphous (Al85Fe15 composition) powders at 1000 °C under a pressure of 7.7 GPa. The hardness of the alloys varied between 5.8 and 9.5 GPa, depending on the Al content. The specific strength, calculated using an approximation of the yield strength according to the Tabor relation, was between 544 and 714 kNm/kg. Based on the results obtained, we infer that application of high pressure affected crystallisation of amorphous Al85Fe15 alloy, influencing the phase composition of the crystallisation product, and phase changes in nanocrystalline Al80Fe20 alloy, inhibiting them.  相似文献   

2.
In the present study, an alternative approach to the synthesis of TiNi alloys through powder metallurgy was successfully conducted by mechanically activated reactive extrusion synthesis (MARES) using elemental powders. The production of dense bodies was essentially dependent on the amount of intermetallic phases formed prior to reactive extrusion and on the densification temperature. The mechanically activated powders yielded a well controlled synthetic reaction during heating up to 900 °C with formation of multiphase products. This was possible due to the powder structure developed during mechanical activation. The best densified products were obtained at 700 °C although without a complete conversion into NiTi phase. More homogeneous microstructures and an effective reduction in the amount of secondary intermetallic phases were achieved after heat treatment at 950 °C/24 h followed by water quenching, yielding TiNi as the predominant phase, a relative density of 97%, and a Vickers micro-hardness of 682 HV.  相似文献   

3.
The structural and kinetic characteristics of the mechanically alloyed Mg1.9Al0.1Ni were investigated. It was found that Mg1.9Al0.1Ni can absorb/desorb about 3.55/3.44 mass% H at a high rate and it has a hexagonal crystal structure as Mg2Ni. The hydriding/dehydriding (H/D) rates in the two-phase (–β) region of Mg1.9Al0.1Ni were measured and studied at temperatures ranging from 553 to 623 K under an approximately isobaric condition. The obtained data of H/D rates indicated that hydrogen diffusion was the rate-controlling step through the hydride phase. A new model was successfully used to calculate the kinetic experimental results. It can be seen that theoretical calculation agrees well with experimental data. The corresponding activation energies are 47 600 and 54 500 J/mol H2 for H/D processes, respectively.  相似文献   

4.
Nanocrystalline Ni3Al was fabricated through mechanical alloying of elemental powders and spark plasma sintering. The nanocrystalline Ni3Al has a nearly full density after being sintered at 1223 K for 10 min under a pressure of 65 MPa. Isothermal and cyclic oxidations of nanocrystalline Ni3Al were tested at 1173–1373 K with intervals of 100 K. The results indicate that nanocrystalline Ni3Al exhibits excellent isothermal and cyclical oxidation resistance. The oxide scales consist primarily of dense and continuous -Al2O3. The grain refinement is beneficial for improving the oxidation resistance of Ni3Al by providing more nucleation centers for the Al2O3 formation, promoting the selective formation of Al2O3 and improving the adhesion of oxide scales to the matrix.  相似文献   

5.
Xiaofeng Liu  Yunfeng Zhu  Liquan Li   《Intermetallics》2007,15(12):1582-1588
We reported the structure and the notable hydrogen storage properties of the composites Mg100−xNix (x = 5, 11.3, 20, 25) prepared from metallic powder mixtures of magnesium and nickel by the process of HCS + MM, i.e., the hydriding combustion synthesis (HCS) followed by mechanical milling (MM). X-ray diffraction (XRD) and scanning electron microscopy (SEM) results demonstrated that mechanical milling led to drastic pulverization and grain refinement of the composite produced by HCS. All the composites with different compositions showed a remarkable decline in dehydriding temperature comparing with that of the hydride mixtures prepared only by HCS. Furthermore, the hydriding rates of these composites were excellent. At 313 K the composite Mg80Ni20 showed the highest hydrogen capacity of 2.77 wt.% within 600 s among these four composites. The Mg95Ni5 showed maximum capacity of 4.88 wt.% at 373 K and 5.41 wt.% at 473 K within only 100 s. Some factors contributing to the improvement in hydriding rates were discussed in this paper.  相似文献   

6.
In the present work an elemental powder mixture of Al60Fe15Si15Ti10 (at.%) was mechanically alloyed in a high-energy ball mill. A part of the milling product was examined in a calorimeter, while another portion was subjected to consolidation by hot-pressing at 1000 °C for 180 s under a pressure of 7.7 GPa. The results obtained show that a nanocrystalline cubic phase with the lattice parameter a0 = 11.645 Å, isomorphous with the τ2 (Al2FeTi) phase, is formed during mechanical alloying process. Heating of the milling product in the calorimeter up to 720 °C causes limited growth of grains, however the τ2 phase remains nanocrystalline with the mean crystallite size of 28 nm. Grain growth takes place during consolidation of the milling product as well, although the τ2 phase remains nanocrystalline with the mean crystallite size of 34 nm. The microhardness of the bulk nanocrystalline sample is 1013 HV0.2 and its open porosity is 0.3%. The results obtained show that the quality of compaction with preserving nanometric grain size of the τ2 phase is satisfactory and its microhardness is relatively high.  相似文献   

7.
D. Roy  S. Kumari  R. Mitra  I. Manna 《Intermetallics》2007,15(12):1595-1605
Multiphase Al65Cu20Ti15 intermetallic alloy matrix composite, dispersed with 10 wt.% of TiO2 nanoparticles, has been processed by mechanical alloying, followed by spark plasma sintering under pressure in the temperature range of 623–873 K. Differential scanning calorimetry and X-ray diffraction suggest that equilibrium crystalline phases evolve from the amorphous or intermediate crystalline phases. Transmission electron microscopy shows that the composite sintered at 873 K has partially amorphous microstructure, with dispersion of equilibrium, crystalline, intermetallic precipitates of Al5CuTi2, Al3Ti, and Al2Cu of 25–50 nm size, besides the TiO2. The composite sintered at 873 K exhibits little porosity, hardness of 5.6 GPa, indentation fracture toughness in the range of 3.1–4.2 MPa√m, and compressive strength of 1.1 GPa. Indentation crack deflection by TiO2 particle aggregates causes increase in fracture resistance with crack length, and suggests R-curve type behaviour. The study provides guidelines for processing high strength amorphous–nanocrystalline intermetallic composites based on the Al–Cu–Ti ternary system.  相似文献   

8.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   

9.
Results on research work on hard zinc refining with aluminium on a laboratory and a commercial scale have been presented. The research was carried out according to a fractorial experiment design with the determination of four processes variables. Distribution of Al, Fe and Zn was examined by the X-ray micro-analyser and also intermetallic phases were identified. As a result of the formation of intermetallic phases which, lighter than zinc, were coming to the metal surface, a refined zinc containing 0.02 wt.% Fe and suitable for re-use in the processes of steel products coated with zinc, was obtained.  相似文献   

10.
The equiatomic multiprincipal CoCrFeCuNi and CoCrFeMnNi high-entropy alloys (HEAs) were consolidated via high pressure sintering (HPS) from the powders prepared by the mechanical alloying method (MA). The structures of the MA'ed CoCrFeCuNi and CoCrFeMnNi powders consisted of a face-centered-cubic (FCC) phase and a minority body-centered cubic (BCC) phase. After being consolidated by HPS at 5 GPa, the structure of both HEAs transformed to a single FCC phase. The grain sizes of the HPS'ed CoCrFeCuNi and CoCrFeMnNi HEAs were about 100 nm. The alloys keep the FCC structure until the pressure reaches 31 GPa. The hardness of the HPS'ed CoCrFeCuNi and CoCrFeMnNi HEAs were 494 Hv and 587 Hv, respectively, much higher than their counterparts prepared by casting. Both alloys show typical paramagnetism, however, possessing different saturated magnetization. The mechanisms responsible for the observed influence of Cu and Mn on mechanical behavior and magnetic property of the HEAs are discussed in detail.  相似文献   

11.
Effective application of the Nd---Fe---B type permanent magnets in electrotechnical products, instruments, aviation and space devices demands knowledge of their proper service parameters. In this connection, a comprehensive study of a wide spectrum of sintered Nd---Fe---B type permanent magnets with various additions of rare earth (RE) and 3-d metals (14 compositions, including so-called commercial and laboratory permanent magnets) was carried out. The mechanical (elastic and strength properties) and physical (magnetic and thermal properties, and electrical resistivity) properties of the studied magnets are tabulated, and the data are discussed. The results obtained allow selection of the optimal permanent magnet composition, depending on required properties and the application. Moreover, the results obtained for various permanent magnets are discussed, taking into account the influence of the factors which are sensitive or insensitive to structure and/or composition changes of the magnets.  相似文献   

12.
研究了机械合金化诱发AgCu20Ni2过饱和合金粉末的形成及粉末冶金方法制备AgCu20Ni2合金的过程,对获得的AgCu20Ni2合金的组织和物理性能关系进行了分析,探讨了制备工艺和冷压变形对合金综合性能的影响。结果表明:采用高能球磨30 h,可获得纳米晶的过饱和合金粉末;合金粉末制备的AgCu20Ni2合金由富Ag的基体α相和均匀分布的析出β相构成,析出相界面结构能有效阻碍基体中位错的运动,强化效果明显。合金断口的SEM、EDS分析表明,AgCu20Ni2合金的断裂类型为韧性断裂。  相似文献   

13.
This work is devoted to the preparation of ultrafine material based on Al–Cu–Fe quasicrystalline phase by powder metallurgy using mechanical alloying and Spark Plasma Sintering. The dependence of microstructure and phase composition of powders on the conditions of mechanical alloying was described. It was found that the Al60Cu30Fe10 quasicrystalline phase forms directly already after 2 h of milling under optimized conditions. The stability of this quasicrystalline phase was studied at various temperatures of Spark Plasma Sintering compaction process.  相似文献   

14.
The SmCo5/α-Fe nanocomposite powders were prepared by high energy ball milling and the inter-diffusion reaction between the SmCo5 and α-Fe magnetic phases were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and 57Fe Mössbauer spectroscopy. While structural and magnetic measurements could reveal only the presence of SmCo5 and α-Fe phases, Mössbauer studies could clearly specify the extent of alloying between Fe and Co atoms in terms of evolution of α-Fe(Co) phase as a function of milling time. It has been found that the fractional volume of α-Fe(Co) solid solution tends to increase at the expense of the initial α-Fe phase upon progressive milling.  相似文献   

15.
Amorphous Zr70Pd30 and Zr70Pd20Cu10 alloys were prepared by mechanical milling and melt spinnng to compare their devitrification behaviors. The devitrification of mechanically milled Zr70Pd30 and Zr70Pd20Cu10 powders occurs via a single-step, first-order transformation to a stable Zr2Pd tetragonal structure. This is in sharp contrast to the devitrification of the same amorphous alloys prepared by melt spinning, in which a primary meta-stable quasicrystalline phase forms. Since the mechanical milling process does not involve direct liquid phase formation of an amorphous structure, it is inferred that the short-range order in the solid state derived amorphous powder is different from that in the melt spun ribbon. During mechanical milling of an amorphous melt spun ribbon, crystallization of the quasicrystalline phase appears to precede disordering into an amorphous structure having an different short range order. Deformation of an amorphous melt spun ribbon by repetitive rolling at ambient temperature crystallizes the meta-stable quasicrystalline phase.  相似文献   

16.
Ternary compounds of Mg2Si1−xSbx (0 ≤ x ≤ 0.10) are prepared by a combination of liquid-solid reaction, ball milling, and spark plasma sintering. The carrier concentration of Mg2Si1−xSbx increases with the Sb content x and reaches 1.1 × 1021 cm−3 at x = 0.10, which is approximately ten times higher than that previously reported. The high carrier concentration is attributed to the facilitation of Sb-doping by ball milling and the suppression of Mg vacancy formation by short-time sintering. No decrease in the carrier concentration of Mg2Si0.90Sb0.10 is observed after annealing at 773 K for 100 h in a semi-closed system, which suggests that the compound is stable at 773 K under a high partial pressure of Mg.  相似文献   

17.
In order to improve the thermoelectric properties via efficient phonon scattering Didymium (DD), a mixture of Pr and Nd, was used as a new filler in ternary skutterudites (Fe1−xCox)4Sb12 and (Fe1−xNix)4Sb12. DD-filling levels have been determined from combined data of X-ray powder diffraction and electron microprobe analyses (EMPA). Thermoelectric properties have been characterized by measurements of electrical resistivity, thermopower and thermal conductivity in the temperature range from 4.3 to 800 K. The effect of nanostructuring in DD0.4Fe2Co2Sb12 was elucidated from a comparison of both micro-powder (ground in a WC-mortar, 10 μm) and nano-powder (ball-milled, 150 nm), both hot pressed under identical conditions. The figure of merit ZT depends on the Fe/Co and Ni/Co-contents, respectively, reaching ZT > 1. At low temperatures the nanostructured material exhibits a higher thermoelectric figure of merit. The Vickers hardness was measured for all samples being higher for the nanostructured material.  相似文献   

18.
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl intermetallic phase was mixed with 30 vol.% of Al powder. This powder mixture was consolidated under the pressure of 7.7 GPa at 600, 700, 800 and 1000 °C for 15 and 180 s. During the consolidation, in all cases, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. Moreover, a solid-state reaction between the intermetallic matrix and Al occurred, yielding an Al3Ni phase. Progress of this reaction depended on the consolidation temperature and temperature exposure time, thus Al3Ni2–Al, Al3Ni2–Al–Al3Ni or Al3Ni2–Al3Ni composites were produced by hot-pressing with various parameters. The mean crystallite size of the Al3Ni2 intermetallic matrix in the composites is 39–67 nm, depending on consolidation parameters. The composites hardness is in the range of 6.02–7.51 GPa.  相似文献   

19.
In the present investigation, we have studied the phase transformation of the CuAl2 intermetallic alloy with tetragonal structure by high-energy ball-milling. The structural changes with milling time were followed by X-ray diffraction, differential scanning calorimetry and electron microscopy. It is found that CuAl2-phase transforms to body centered cubic structure after a long periods of high-energy ball-milling time. According to SEM results, the milling powders change their mechanical behavior from brittle to ductile during the phase transformation. Rietveld analysis showed that around 29% of unit cells in the metastable cubic structure are occupied by Cu suggesting Al segregation in the material and explaining the change in the mechanical behavior of the alloy.  相似文献   

20.
NiAl intermetallic has been produced by mechanical alloying in a high energy vibrator mill using elemental Ni and Al powder mixture. The NiAl powders were formed in two ways. One by a gradual exothermic reaction mechanism during a long time continuous milling and the other by explosive exothermic reaction mechanism that occurred when opening the milling vessel to the air atmosphere after a short time milling. Prolonged milling for both cases resulted in change of morphology and refinement of grain size down to nano scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号