首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite element code for steady‐state hot rolling processes of rigid–visco‐plastic materials under plane–strain conditions was developed in a mixed Eulerian–Lagrangian framework. This special set up allows for a direct calculation of the local deformations occurring at the free surfaces outside the contact region between the strip and the work roll. It further simplifies the implementation of displacement boundary conditions, such as the impenetrability condition. When applied to different practical hot rolling situations, ranging from thick slab to ultra‐thin strip rolling, the velocity–displacement based model (briefly denoted as vu‐model) in this mixed Eulerian–Lagrangian reference system proves to be a robust and efficient method. The vu‐model is validated against a solely velocity‐based model (vv‐model) and against elementary methods based on the Kármán–Siebel and Orowan differential equations. The latter methods, when calibrated, are known to be in line with experimental results for homogeneous deformation cases. For a massive deformation it is further validated against the commercial finite‐element software package Abaqus/Explicit. It is shown that the results obtained with the vu‐model are in excellent agreement with the predictions of the vv‐model and that the vu‐model is even more robust than its vv‐counterpart. Throughout the study we assumed a rigid cylindrical work roll; only for the homogeneous test case, we also investigated the effect of an elastically deformable work roll within the frame of the Jortner Green's function method. The new modelling approach combines the advantages of conventional Eulerian and Lagrangian modelling concepts and can be extended to three dimensions in a straightforward manner. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Multi‐material Eulerian and arbitrary Lagrangian–Eulerian methods were originally developed for solving hypervelocity impact problems, but they are attractive for solving a broad range of problems having large deformations, the evolution of new free surfaces, and chemical reactions. The contact, separation, and slip between two surfaces have traditionally been addressed by the mixture theory, however the accuracy of this approach is severely limited. To improve the accuracy, an extended finite element formulation is developed and example calculations are presented. As a side benefit, the mixture theory is eliminated from the multi‐material formulation, eliminating the issues associated with the equilibration time between adjacent materials. By design, the new formulation is relatively simple to implement in existing multi‐material codes, parallelizes without difficulty, and has a low memory burden. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We examined, through comparison among the full‐coupling (FC), operator‐splitting (OS), and predictor–corrector (PC) techniques, the effectiveness of using the PC technique to solve depth‐averaged reactive transport equations in the shallow water domain. Our investigation has led to three major conclusions. Firstly, both the OS and PC techniques can efficiently solve reactive transport equations because the advection–diffusion transport equations are solved outside the non‐linear iteration loop and the reaction equations are solved node by node. However, these two techniques may risk sacrificing computational accuracy. Secondly, the OS or PC technique incorporated with the Lagrangian–Eulerian (LE) approach can handle boundary sources more precisely than alternatively with the conventional Eulerian (CE) approach. Thirdly, with the LE approach incorporated, the numerical results from the three techniques agreed highly with one another except when diffusion became significant. In this case, the PC technique's result still matched well with the FC technique's result, but differences between the OS and FC techniques' results arose as diffusion increased. Based on this study, we recommend to apply as a first step the PC technique to solving reactive transport equations with respect to both computational efficiency and accuracy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A key issue in Arbitrary Lagrangian–Eulerian (ALE) non-linear solid mechanics is the correct treatment of the convection terms in the constitutive equation. These convection terms, which reflect the relative motion between the finite element mesh and the material, are found for both transient and quasistatic ALE analyses. It is shown in this paper that the same explicit algorithms can be employed to handle the convection terms of the constitutive equation for both types of analyses. The most attractive consequence of this fact is that a quasistatic simulation can be upgraded from Updated Lagrangian (UL) to ALE without significant extra computational cost. These ideas are illustrated by means of two numerical examples. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
We present a Lagrangian–Eulerian method with adaptively local ZOOMing and Peak/valley Capturing approach (LEZOOMPC), consisting of advection–diffusion decoupling, backward particle tracking, forward particle tracking, adaptively local zooming, peak/valley capturing, and slave point utilization, to solve three-dimensional advection–diffusion transport equations. This approach and the associated computer code, 3DLEZOOMPC, were developed to circumvent the difficulties associated with the Exact Peak Capturing and Oscillation-Free (EPCOF) scheme, developed earlier by the authors, when it was extended from a one-dimensional space to a three-dimensional space. The accurate results of applying EPCOF to solving two one-dimensional benchmark problems under a variety of conditions have shown the capability of this scheme to eliminate all types of numerical errors associated with the advection term and to keep the maximum computational error to be within the prescribed error tolerance. However, difficulties arose when the EPCOF scheme was extended to a multi-dimensional space mainly due to the geometry. To avoid these geometric difficulties, we modified the EPCOF scheme and named the modified scheme LEZOOMPC. LEZOOMPC uses regularly local zooming for rough elements and peak/valley capturing within subelements to resolve the problems of tetrangulation and boundary source as well as to preserve the shape of concentration distribution. In addition, LEZOOMPC employs the concept of ‘slave points’ to deal with the compatibility problem in the diffusion zooming of the Eulerian step. As a result, not only is the geometrical problem resolved, but also the spirit of EPCOF is retained. Application of 3DLEZOOMPC to solving an advection-decay and a boundary source benchmark problems indicates its capability in solving advection transport problems accurately to within any prescribed error tolerance by using mesh Courant number ranging from 0 to infinity. Demonstration of using 3DLEZOOMPC to solve an advection–diffusion benchmark problem shows how the numerical solution is improved with the increment of the diffusion zooming factors. 3DLEZOOMPC could solve advection–diffusion transport problems accurately by using mesh Peclet numbers ranging from 0 to infinity and very large time-step size. The size of time-step is related to both the diffusion coefficients and mesh sizes. Hence, it is limited only by the diffusion solver. The application of this approach to a two-dimensional space has been demonstrated earlier in the paper entitled ‘A Lagrangian–Eulerian method with adaptively local zooming and peak/valley capturing approach to solve two-dimensional advection–diffusion transport equations’. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Interactions between deformable composite structures and compressible multiphase flow are common for many marine/submarine problems. Recently, there has been an increased interest in the application of composite structures in marine industry (e.g. propulsion system, ship hulls, marine platforms, marine turbines, etc) to take advantage their high stiffness to weight and strength to weight ratios, and high impact/shock resistance characteristics. It is therefore important to evaluate the performance of composite structures subject to dynamic loads. In this paper, a coupled Eulerian–Lagrangian numerical method is proposed to model the two‐dimensional (2D) or axisymmetric response of deformable composite structures subject to shock and blast loads. The method couples an Eulerian compressible multiphase fluid solver with a general Lagrangian solid solver using an interface capturing method, and is validated using analytical, numerical, and experimental results. A 2D case study is shown for an underwater explosion beneath a three‐layered composite structure with clamped ends. The importance of 2D fluid–structure interaction effects on the transient response between composite structures and compressible multiphase flow is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Efficient mesh motion techniques are a key issue to achieve satisfactory results in the arbitrary Lagrangian–Eulerian (ALE) finite element formulation when simulating large deformation problems such as metal‐forming. In the updated Lagrangian (UL) formulation, mesh and material movement are attached and an excessive mesh distortion usually appears. By uncoupling mesh movement from material movement, the ALE formulation can relocate the mesh to avoid distortion. To facilitate the calculation process, the ALE operator is split into two steps at each analysis time step: UL step (where deformation due to loading is calculated without convective terms) and Eulerian step (where mesh motion is applied). In this work, mesh motion is performed by new nodal relocation methods, developed for eight‐node hexahedral elements, which can move internal and boundary nodes, improving and concentrating the mesh in critical zones. After mesh motion, data is transferred from the UL mesh to the relocated mesh using an expansion of stresses in a Taylor's series. Two numerical applications are presented, comparing results of UL and ALE formulation with results found in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we propose a method to solve Solid Mechanics and fluid–structure interaction problems using always a fixed background mesh for the spatial discretization. The main feature of the method is that it properly accounts for the advection of information as the domain boundary evolves. To achieve this, we use an Arbitrary Lagrangian–Eulerian (ALE) framework, the distinctive characteristic being that at each time step results are projected onto a fixed, background mesh. For solid mechanics problems subject to large strains, the fixed‐mesh (FM)‐ALE method avoids the element stretching found in fully Lagrangian approaches. For FSI problems, FM‐ALE allows for the use of a single background mesh to solve both the fluid and the structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive Arbitrary Lagrangian–Eulerian (ALE) finite element method is developed for solving large deformation problems with applications in metal-forming simulation. The ALE mesh movement is coupled with r-adaptation of automatic node relocation, to minimize element distortion during the process of deformation. Strain localization is considered in this study through the constitutive relations for ductile porous materials. Prediction of localized deformation is achieved through a multilevel mesh superimposition method, termed as s-adaptation. The model is validated by comparison with established results and codes, and a few metal-forming problems are simulated to test its effectiveness.  相似文献   

12.
13.
This paper first discusses alternative stress integration schemes in numerical solutions to large‐ deformation problems in hardening materials. Three common numerical methods, i.e. the total‐Lagrangian (TL), the updated‐Lagrangian (UL) and the arbitrary Lagrangian–Eulerian (ALE) methods, are discussed. The UL and the ALE methods are further complicated with three different stress integration schemes. The objectivity of these schemes is discussed. The ALE method presented in this paper is based on the operator‐split technique where the analysis is carried out in two steps; an UL step followed by an Eulerian step. This paper also introduces a new method for mesh refinement in the ALE method. Using the known displacements at domain boundaries and material interfaces as prescribed displacements, the problem is re‐analysed by assuming linear elasticity and the deformed mesh resulting from such an analysis is then used as the new mesh in the second step of the ALE method. It is shown that this repeated elastic analysis is actually more efficient than mesh generation and it can be used for general cases regardless of problem dimension and problem topology. The relative performance of the TL, UL and ALE methods is investigated through the analyses of some classic geotechnical problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The finite element method, as applied to problems in solid mechanics, typically uses a mesh with the velocities at the nodes and the remaining solution variables, including the density, located at the integration points. The arbitrary Lagrangian–Eulerian formulations used in solid mechanics are therefore faced with the challenge of transporting momentum, which is defined in terms of variables located at separate points in space, in a conservative manner. Two types of momentum transport methods have been developed over the years. The first constructs a dual mesh with the nodes as the integration points, a difficult task on an unstructured finite element mesh. The second uses the original mesh and constructs auxiliary variables for transport from which the final velocity may be recovered. An analysis demonstrates how the two methods are related. Simplified implementations of each type—dual mesh and element centered—are developed in detail and their performance is compared to verify the analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We present an algorithm for modelling coupled dynamic interactions of a very thin flexible structure immersed in a high‐speed flow. The modelling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian large‐deformation formulation for the dynamic response of the structure. The coupling between the fluid and the solid response is achieved via an approach based on extrapolation and velocity reconstruction inspired in the Ghost Fluid Method. The algorithm presented does not assume the existence of a region exterior to the fluid domain as it was previously proposed and, thus, enables the consideration of very thin open boundaries and structures where the flow may be relevant on both sides of the interface. We demonstrate the accuracy of the method and its ability to describe disparate flow conditions across a fixed thin rigid interface without pollution of the flow field across the solid interface by comparing with analytical solutions of compressible flows. We also demonstrate the versatility and robustness of the method in a complex fluid–structure interaction problem corresponding to the transient supersonic flow past a highly flexible structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a new computational model developed to solve two‐dimensional incompressible viscous flow problems in external flow fields. The model based on the Navier–Stokes equations in primitive variables is able to solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the pressure projection method. The external flow field is simulated using the boundary element method by solving a pressure Poisson equation that assumes the pressure as zero at the infinite boundary. The momentum equation of the flow motion is solved using the three‐step finite element method. The arbitrary Lagrangian–Eulerian method is incorporated into the model, to solve the moving boundary problems. The present model is applied to simulate various external flow problems like flow across circular cylinder, acceleration and deceleration of the circular cylinder moving in a still fluid and vibration of the circular cylinder induced by the vortex shedding. The simulation results are found to be very reasonable and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an improved algorithm to deal with wave propagation and localization problems in saturated viscoplastic geomaterials. It consists of a mixed formulation in terms of effective stress, velocity and pore pressure that uses a fractional step algorithm allowing the use of equal order of interpolation for the three variables and the simplest element such as the linear triangle. The viscoplastic model used is of modified cam‐clay type. Viscoplasticity results in a strong source term that deteriorates the accuracy of the two‐step Taylor–Galerkin algorithm. Therefore a Runge–Kutta splitting scheme has been used to deal with the source terms, resulting in a better accuracy of the method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a multi-dimensional particle tracking technique for applying the Lagrangian–Eulerian finite element method to solve transport equations in transient-state simulations. In the Lagrangian– Eulerian approach, the advection term is handled in the Lagrangian step so that the associated numerical errors can be considerably reduced. It is important to have an adequate particle tracking technique for computing advection accurately in the Lagrangian step. The particle tracking technique presented here is designed to trace fictitious particles in the real-world flow field where the flow velocity is either measured or computed at a limited number of locations. The technique, named ‘in-element’ particle tracking, traces fictitious particles on an element-by-element basis. Given a velocity field, a fictitious particle is traced one element by one element until either a boundary is encountered or the available time is completely consumed. For the tracking within an element, the element is divided into a desired number of subelements with the interpolated velocity computed at all nodes of the subelements. A fictitious particle, thus, is traced one subelement by one subelement within the element. The desired number of subelements can be determined based on the complexity of the flow field being considered. The more complicated the flow field is, the more subelements are needed to achieve accurate particle tracking results. A single-velocity approach can be used to efficiently perform particle tracking in a smooth flow field, while an average-velocity approach can be employed to increase the tracking accuracy for more complex flow fields.  相似文献   

19.
We propose a numerical method for a fluid–structure interaction problem. The material of the structure is homogeneous, isotropic, and it can be described by the compressible neo‐Hookean constitutive equation, while the fluid is governed by the Navier–Stokes equations. Our study does not use turbulence model. Updated Lagrangian method is used for the structure and fluid equations are written in Arbitrary Lagrangian–Eulerian coordinates. One global moving mesh is employed for the fluid–structure domain, where the fluid–structure interface is an ‘interior boundary’ of the global mesh. At each time step, we solve a monolithic system of unknown velocity and pressure defined on the global mesh. The continuity of velocity at the interface is automatically satisfied, while the continuity of stress does not appear explicitly in the monolithic fluid–structure system. This method is very fast because at each time step, we solve only one linear system. This linear system was obtained by the linearization of the structure around the previous position in the updated Lagrangian formulation and by the employment of a linear convection term for the fluid. Numerical results are presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A contact method with friction for the multi‐dimensional Lagrangian step in multi‐material arbitrary Lagrangian–Eulerian (ALE) formulations is presented. In our previous research, the extended finite element method (X‐FEM) was used to create independent fields (i.e. velocity, strain rate, force, mass, etc.) for each material in the problem to model contact without friction. The research presented here includes the extension to friction and improvements to the accuracy and robustness of our previous study. The accelerations of the multi‐material nodes are obtained by coupling the material force and mass fields as a function of the prescribed contact; similarly, the velocities of the multi‐material nodes are recalculated using the conservation of momentum when the prescribed contact requires it. The coupling procedures impose the same nodal velocity on the coupled materials in the direction normal to their interface during the time step update. As a result, the overlap of materials is prevented and unwanted separation does not occur. Three different types of contacts are treated: perfectly bonded, frictionless slip, and slip with friction. Example impact problems are solved and the numerical solutions are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号