首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most populations in rural Africa have no access to electricity, in this study, a comparative analysis between grid extension and the implementation of renewable off-grid hybrid power system is carried out. The objective of the study is to determine the best feasible option. Napier, a farming village in the Western Cape province of South Africa was selected as the site for the comparative analysis and HOMER PRO software was used to develop an optimal system using the wind and solar resources of the selected site. The load profile considered in the analysis includes lighting, cooking and hot water demands. The best feasible option is determined based on the Net Present Cost of each feasible scenario. Sensitivity analysis on the current cost and the projected cost of hydrogen storage w conducted to observe the impact of the cost of hydrogen storage on the renewable off-grid system cost of energy.  相似文献   

2.
In this study, electric requirement of Gökceada, the biggest island of Turkey is analyzed that how can it be supplied with renewable energy sources. In order to consider the optimal system configuration of hybrid or non-hybrid renewable energy system, the HOMER program is used. At relevant studies which are done about renewable energy sources, it is seen that cost analysis are done according to annual average values. But in this study, HOMER program is used in order to make the system which is generated with computer, as real as possible. On the other studies, it is found out that various changes which are occurred in the year cannot be added to the system. With HOMER; the effect of values which vary by the time like electric load, wind speed and solar radiation, is considered and than the electric system are modelled. For each of these data, 8760 values are formed in HOMER. HOMER cannot model transient changes which is smaller than 1 h. However; it is expressed that, hourly data are sufficient in order to analyze the system like this. In this study; systems which are composed of solar panels, wind turbines and batteries, auxiliary tools are modelled with considered various scenarios. Grid connection or diesel generators for backup power are also modelled. Values of components which form the renewable system of Gökceada, are determined by the simulations. The excess energy which occurs when the energy source is bigger than the load, can be sold to the grid and so, the cost of energy can be reduced. According to the simulation results; it is seen that, energy costs of wind energy systems are lower for Gökceada. It is revealed that wind energy is advantageous in Gökceada especially with grid sales according to the grid connected scenario.  相似文献   

3.
This paper proposes the use of a PV–wind–diesel generator hybrid system in order to determine the optimal configuration of renewable energy in Malaysia and to compare the production cost of solar and wind power with its annual yield relevant to different regions in Malaysia namely, Johor, Sarawak, Penang and Selangor. The configuration of optimal hybrid system is selected based on the best components and sizing with appropriate operating strategy to provide a cheap, efficient, reliable and cost-effective system. The various renewable energy sources and their applicability in terms of cost and performance are analyzed. Moreover, the annual yield and cost of energy production of solar and wind energy are evaluated. The Simulations were carried out using the HOMER program based on data obtained from the Malaysian Meteorological Centre. Results show that, for Malaysia, a PV–diesel generator hybrid system is the most suitable solution in terms of economic performance and pollution. However, the cost of production of solar and wind energy proved to be cheaper and more environmentally friendly than the energy produced from diesel generators.  相似文献   

4.
This work looks at the feasibility of a standalone hybrid power generation system for providing power to a rural community in the Pacific Islands. The optimization and sensitivity analysis of a proposed PV/Wind/Diesel hybrid System is performed together with economic analysis. We have used HOMER, a sizing and optimization tool for distributed power system, developed by National Renewable Energy Laboratory (NREL) for our analysis. The sensitivity analysis was done using wind speed data and diesel price as variables. An Ice storage facility having a corrected mean daily load of 60 kWh/day was considered as the stand-alone load. The life cycle cost analysis was done for a number of scenarios with different renewable energy contribution to the total electricity produced.  相似文献   

5.
The main objective of this study is to determine the optimum size of systems able to fulfil the electrical energy requirements of remote sites located in Hajer Bani (HB) Hameed in the North of Oman, Masirah Island and the Mothorah area in the South of Oman. The methodology applied provides a useful and simple approach for sizing and analysing the hybrid systems using Hybrid Optimization Model for Electric Renewables (HOMER). The aim is to identify a configuration among a set of systems that meet the desired system reliability requirements with the lowest energy cost. The results of the analysis are a list of feasible power supply systems, classified according to their net present cost. Actual hourly load data are taken from these sites and are used in the model, and the meteorological readings are used either from the same site or from a nearby one. A comparison between the costs of electricity generated from renewable energy resources in these locations is done and the payback period for renewable energy components is calculated. Moreover, the effects of the temperature on the photovoltaic cells efficiency and energy cost are considered. The cost of energy was found to be 0.206, 0.361 and 0.327 $/kWh for Masirah Island, Mothorah and HB Hameed, respectively.  相似文献   

6.
Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system.  相似文献   

7.
M.J. Khan  M.T. Iqbal   《Renewable Energy》2005,30(6):835-854
A potential solution for stand-alone power generation is to use a hybrid energy system in parallel with some hydrogen energy storage. In this paper, a pre-feasibility study of using hybrid energy systems with hydrogen as an energy carrier for applications in Newfoundland, Canada is explained. Various renewable and non-renewable energy sources, energy storage methods and their applicability in terms of cost and performance are discussed. HOMER is used as a sizing and optimization tool. Sensitivity analysis with wind speed data, solar radiation level, diesel price and fuel cell cost was done. A remote house having an energy consumption of 25 kW h/d with a 4.73 kW peak power demand was considered as the stand-alone load. It was found that, a wind–diesel–battery hybrid system is the most suitable solution at present. However, with a reduction of fuel cell cost to 15% of its current value, a wind–fuel cell system would become a superior choice. Validity of such projection and economics against conventional power sources were identified. Sizing, performance and various cost indices were also analyzed in this paper.  相似文献   

8.
The Binalood region in Iran enjoys an average wind speed of 6.82 m/s at 40 m elevation and an average daily solar radiation of 4.79 kWh/m2/day. Within this perspective, a remote rural village in Binalood region, called Sheikh Abolhassan, can readily be expected to have more than enough potential for its load demand to be supplied with a stand-alone hybrid renewable energy system. Yet the local state-run electrical service provider extended the utility grid to the village in 2006 to boost the already present diesel generator. This study aims, firstly, to explore how economical it would have been to keep supplying the electricity of the village by the diesel generator and add renewable energy generators to increase the renewable fraction of the system. On a second stage, we tried to investigate how renewable energy sources (RESs) can still be added to the current utility grid power supply in Sheikh Abolhassan to achieve a more economical and environmentally friendly system. The software HOMER is used in this study to evaluate the feasibility of various hybrid diesel-RES and grid-RES energy systems. Findings indicated that the addition of renewable power generators to the system both before and after the grid extension could and still can result in a more economical power system, which is obviously cleaner and more climate-benign.  相似文献   

9.
Remote areas usually do not have access to electricity from the national grid. The energy demand is often covered by diesel generators, resulting in high operating costs and significant environmental impacts. With reference to the case study of Ginostra (a village on a small island in the south of Italy), this paper analyses the environmental sustainability of an innovative solution based on Renewable Energy Sources (RES) integrated with a hybrid hydrogen-battery energy storage system. A comparative Life Cycle Assessment (LCA) has been carried out to evaluate if and to what extent the RES-based system could bring environmental improvements compared to the current diesel-based configuration. The results show that the impact of the RES-based system is less than 10% of that of the current diesel-based solution for almost all impact categories (climate change, ozone depletion, photochemical ozone formation, acidification, marine and terrestrial eutrophication and fossil resource use). The renewable solution has slightly higher values only for the following indicators: use of mineral and metal resources, water use and freshwater eutrophication. The climate change category accounts for 0.197 kg CO2 eq./kWh in the renewable scenario and 1.73 kg CO2 eq./kWh in the diesel-based scenario, which corresponds to a reduction in GHG emissions of 89%. By shifting to the RES-based solution, about 6570 t of CO2 equivalent can be saved in 25 years (lifetime of the plant). In conclusion, the hydrogen-battery system could provide a sustainable and reliable alternative for power supply in remote areas.  相似文献   

10.
Given the recent increasing public focus on climate change issues, there is a need for robust, sustainable and climate friendly power transmission and distribution systems that are intelligent, reliable, and green. Current power systems create environmental impacts as well as contributing to global warming due to their utilization of fossil fuels, especially coal, as carbon dioxide is emitted into the atmosphere. In contrast to fossil fuels, renewable energy is starting to be used as the panacea for solving climate change or global warming problems. This paper describes a feasibility study undertaken to investigate the potentialities of renewable energy including the prospective locations in Australia for renewable energy generation, in particular solar and wind energy. Initially, a hybrid model has been developed to investigate the prospects of wind energy for typical Australian region considering production cost, cost of energy, emission production and contribution from renewable energy using the Hybrid Optimization Model for Electric Renewable (HOMER), a computer model developed by the USA’s National Renewable Energy Laboratory (NREL). This model also explores suitable places around Australia for wind energy generation using statistical analysis. Subsequently, the usefulness of solar energy in the Australian context and suitable locations for solar energy generation are also investigated using a similar hybrid model. Finally, the model has been developed to investigate the prospects of renewable energy in particular wind and solar energy including specific locations in Australia that would be suitable for both wind and solar energy generation. From simulation analysis it is clearly observed that Australia has enormous potentialities for substantially increased use of renewable energy; a large penetration of renewable energy sources into the national power system would reduce CO2 emissions significantly, contributing to the reduction of global warming.  相似文献   

11.
This study is to search for possibilities of supplying the load demand of Kavakli campus of Kirklareli University with solar energy and the fuel cell power generating system (electrolyzer/hydrogen tank/fuel cell) by using the HOMER software due to the fact that hybrid power systems with renewables can significantly reduce emissions which are caused by utilization of non-renewable power sources. In this study, various hybrid systems will be examined and compared among themselves considering cost of energy (COE), renewable fraction, total net present cost (NPC) and hydrogen production. Additionally, this study will seek whether a fuel cell can be integrated into the hybrid systems. According to the study results, the grid connected systems appear cost-effective as expected. Although the grid-connected photovoltaic (PV) hybrid system has the lowest COE and NPC, the grid-connected PV/fuel cell hybrid system with COE, 0.294$/kWh has a slightly higher cost than the optimum one. It is strongly believed that this system may be chosen because it is a cleaner system and its emissions are fairly low.  相似文献   

12.
The provision of electricity is a key component in the development of a country’s health care facilities. This study was performed to estimate the cost of powering a rural primary health centre, in India with a decentralised renewable energy system. The costs were also compared between a decentralised renewable energy system and providing electricity from a grid source. The critical or break-even distance that makes electricity from a decentralised renewable energy system cost effective over that from a grid source was determined. The decentralised renewable energy system considered was a hydrogen-based fuel cell for the generation of electricity with hydrogen extracted from biogas obtained from biomass. The software program HOMER was used for the simulation analysis. The cost of a decentralised renewable energy system was found to be between seven times and less than half that of conventional energy, and the break-even distance was between 43.8 km to a negative distance for varying ranges of input component costs. The results of this study indicated that the use of a decentralised renewable energy system to power a rural primary health centre is both feasible and cost effective, and may even be cheaper than using electricity from a grid source.  相似文献   

13.
A hybrid power system may be used to reduce dependency on either conventional energy or renewable systems. This article deals with the sizing, generator running hours, sensitivity analysis, optimisation, and greenhouse gas emission analysis of hybrid renewable energy systems (HRES). Two locations have been selected where the feasibility of using different hybrid systems is studied for the same load demand. One site is the small remote community of Amini in the Lakshadweep Islands, located in southern India in the Arabian Sea, where solar and/or wind energy is always available throughout the year to provide energy security. Another place is the rural township of Hathras, in the northern Indian state of Uttar Pradesh, where agricultural biomass is found in abundance for the whole year. A comparative study has been made for the two locations for the same load demand by simulating HRES. To achieve the goal of simulation, the hybrid optimisation model for electric renewables (HOMER) software of the National Renewable Energy Laboratory, USA, is used. An optimisation model of a hybrid renewable system has been prepared which simplifies the task of evaluating the design of an off-grid/standalone system. After simulating all possible system equipment with their sizes, a list of many possible configurations may be evaluated and sorted by net present cost to compare the design options. An elaborate sensitivity analysis has been used for each input variable; the whole optimisation process is repeated to get simulated system configurations  相似文献   

14.
《Energy》2001,26(7):679-704
The aim of the present paper is to develop and apply a software tool for designing hybrid renewable energy systems. The hybrid system consists of a wind generator and photovoltaic modules which are the renewable technologies for energy production. The programme has been applied for simulating a hybrid system with the above mentioned technologies in order cover the electricity and water needs of the Merssini village on Donoussa island in the Aegean Sea of Greece. The Merssini village is occupied by 20 year-round residents while the population is doubled during the summer period. The village is non-electrified and faces a problematic scarcity of fresh water. In the analysis that follows, the considered technical data as well as the results of programme runs for winter and summer seasons are presented. The electricity consumption consists of both the household and desalination plant consumption. The system is supplemented with batteries and a micro hydraulic plant for energy storage. The simulation programme was used to optimise the design of the system as well as to manage the energy supply and energy storage. The results prove that this simulation programme constitutes a valuable tool for the determination not only of the optimum combination of technologies, but also the optimum energy management of complex hybrid systems.  相似文献   

15.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

16.
High cost of renewable energy systems has led to its slow adoption in many countries. Hence, it is vital to select an appropriate size of the system in order to reduce the cost and excess energy produced as well as to maximize the available resources. The sizing of hybrid system must satisfy the LPSP (Loss of Power Supply Probability) which determines the ability of the system to meet the load requirements. Once the lowest configurations are determined, the cost of the system must then be taken into consideration to determine the system with the lowest cost. The optimization methodology proposed in this paper uses the ANFIS (Adaptive Neuro-Fuzzy Inference System) to model the PV and wind sources. The algorithm developed is compared to HOMER (Hybrid Optimization Model for Electric Renewables) and HOGA (Hybrid Optimization by Genetic Algorithms) software and the results demonstrate an accuracy of 96% for PV and wind. The optimized system is simulated in PSCAD/EMTDC and the results show that low excess energy is achieved. The optimized system is also able to supply power to the load without any renewable sources for a longer period, while conforming to the desired LPSP.  相似文献   

17.
In this paper, the robust capability of HOMER and Criteria-COPRAS is deployed to explore the prospect of selecting a renewable energy system. The energy system consisting of wind turbines, solar photovoltaic (PV), fuel cell (FC), electrolyzer, hydrogen storage, and battery energy storage is intended to power a residential load in Lagos Nigeria. Based on the economic metric, the results show that the optimal system is a PV-Battery whose total net present cost (TNPC) and initial investment cost are $9060 and $3,818, respectively. However, if the energy systems are ranked based on multiple criteria (economic, technical and environmental aspects), the most preferred of the feasible energy systems is a hybrid PV-FC-wind-battery (TNPC-$10,324, initial cost: $7670). The study results indicate that, for viability in the adoption of hydrogen energy storage as part of the hybrid energy system, the selection metric should be based on more than one criterion.  相似文献   

18.
19.
The paper assesses the energy and environmental performance of two solutions designed to complement renewable energy (RE) technologies, in stand-alone power system (SAPS) configuration typical of minor Mediterranean islands, by converting the available RE surplus. The studied SAPS, based on the Ventotene island demographic, meteorological and load data, features high renewable energy penetration onto the load power demand, i.e. up to 55.25% share of peak power capacity. Transient models have been developed to simulate the storage process of winter renewable energy surplus and the time-dependent matching among SAPS electric demand and the stochastic renewable power contributions combined with energy surplus conversion systems. The study compares a hydrogen-based system and a desalinated water-production system, proposed as two effective alternatives for renewable energy seasonal buffering in an island context. The comparative analysis of the time-dependent system's behaviour has been investigated with an hourly distribution over the period of one reference year, in terms of fuel consumption and hydrogen system energy storage or desalination capacity. The assessment is carried out by taking performance indicators, SAPS fuel savings, as well as stored and dump power data. The study demonstrates the suitability of both the models for the winter renewable energy buffer, in order to improve to the matching of peak energy and water demands.  相似文献   

20.
Renewable energy resources play a very important rule these days to assist the conventional energy systems for doing its function in the UAE due to high greenhouse gas (GHG) emissions and energy demand. In this paper, the analysis and performance of integrated standalone hybrid solar PV, fuel cell and diesel generator power system with battery energy storage system (BESS) or supercapacitor energy storage system (SCESS) in Khorfakkan city, Sharjah were presented. HOMER Pro software was used to model and simulate the hybrid energy system (HES) based on the daily energy consumption for Khorfakkan city. The simulation results show that using SCESS as an energy storage system will help the performance of HES based on the Levelized cost of energy (LCOE) and greenhouse gas (GHG) emissions. The HES with SCESS has renewable fraction (68.1%) and 0.346 $/kWh LCOE. The HES meets the annual AC primary load of the city (13.6 GWh) with negligible electricity excess and with an unmet electrical load of 1.38%. The reduction in GHG emissions for HES with SCESS was 83.2%, equivalent to saving 814,428 gallons of diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号