首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equilibrium quaternary solubilities of dihydroxybenzene (resorcinol + pyrocatechol + hydroquinone + SCCO2) isomers were experimentally determined at 308, 318 and 328 K over a pressure range of 9.8–15.7 MPa by using a saturation method. The effects of temperature, pressure and the components on each other have been thoroughly investigated. The selectivity of SCCO2 for ternary (resorcinol + pyrocatechol + SCCO2) and quaternary systems was discussed. A new model equation for quaternary solubilities of solids has been developed by accounting for non-idealities by combining the solution model with Wilson activity coefficient model. The model equation has five adjustable parameters and correlates the quaternary solubilities of current data along with two other quaternary data reported in the literature.  相似文献   

2.
The equilibrium solubilities of cefixime trihydrate and oxymetholone in supercritical carbon dioxide (CO2) were measured using a “static method”. Cefixime trihydrate is a cephalosporin antibiotic drug and Oxymetholone is a 17alpha-alkylated anabolic-androgenic steroid drug. The experimental measurements for cefixime trihydrate were performed at temperatures of 308, 318 and 328 K as well as pressure range from 183 to 335 bar. The solubility of oxymetholone was determined at 308, 318 and 328 K and pressure range from 121 to 305 bar. The experimental solubility data (mole fraction) for cefixime trihydrate and oxymetholone was greater than 1.6 × 10−7 and 1.6 × 10−5 and less than 3.02 × 10−7 and 1.49 × 10−4, respectively. The solubilities for two drugs in CO2 were correlated by using four semi-empirical models such as Bartle, Kumar and Johnstone (K–J), Mendez-Santiago and Teja (M–T) and Chrastil models. The results obtained from the semi-empirical models show that there is good agreement between the experimental data and the results of semi-empirical models. By using the correlation results, the heat of drug–CO2 solvation and heat of drug vaporization for cefixime–CO2 and oxymetholone–CO2 systems may be approximately estimated. Also, the Peng–Robinson (PR) cubic equation of state (CEOS) along with the van der Waals combining rule was applied to correlate the drugs solubilities in supercritical CO2. The average absolute deviation between the experimental data and the results of PR equation for cefixime trihydrate and oxymetholone was 11.92% and 11.74%, respectively.  相似文献   

3.
Equilibrium solubility of m-nitroaniline and p-nitroaniline in supercritical carbon dioxide (SCCO2) is essential to design the process of SCCO2 extraction and to investigate the effect of each solute on the solubility in SCCO2 ternary system. However, the solubility data is not reported so far. We performed the solubility measurements at the temperatures of 308–328 K and in the pressure range of 11.0–21.0 MPa. The experimental results showed the solubility of m-nitroaniline and p-nitroaniline was enhanced in m-nitroaniline + p-nitroaniline + SCCO2 ternary system. The improvement factor (i), separation factor (μ) and separation efficiency (HE) in the ternary system were defined and calculated, and the best separation result could be obtained at 21.0 MPa and 328 K using SCCO2 extraction, where the separation efficiency was up to 90.9%. Based on the chemical association theory, a new model was developed to calculate the solubility of mixed solutes in SCCO2. The correlation result of the new model was tested by about 500 solubility data from 15 kinds of two solutes mixtures in SCCO2. The correlated result showed that the new model could achieve much better AARD (%) than those of frequently used Sovova and Sovova-T models.  相似文献   

4.
The solubilities of desoxycorticosterone acetate (DA) and clobetasole propionate (CP) in supercritical carbon dioxide (SC-CO2) were measured at temperature ranging from (308 to 348) K and pressures from (12.2 to 35.5) MPa using a static method. The mole fraction solubilities ranged from 10−7 to 13.93 × 10−5. The crossover region was observed for DA and CP at 24.3 and 25.3 MPa, respectively. Solubility data were correlated using four semi-empirical density-based models (Chrastil, Bartle, Kumar, Johnston (K–J) and Mendez-Santiago and Teja (M–T) models). The average absolute relative deviations (AARD%) ranged from 9.3 to 13.6; 8.9 to 11.9; 6.5 to 10.3 and from 10.4 to 13.4 for Chrastil, Bartle, K–J and M–T models, respectively. A comparison among the four models revealed that the K–J model gave much better correlation of the solubilities in comparison with other models. Using the correlation results, the heat of drug–CO2 solvation and that of drug vaporization was separately approximated in the range of −24.2 to −24.5 and 63.8 to 64.8 kJ mol−1. The correlation results showed good agreement with the experimental data.  相似文献   

5.
《中国化学工程学报》2014,22(11-12):1298-1301
Liquid–Liquid Equilibrium (LLE) data for three Ternary Systems comprising cis-1,2-dimethylcyclohexane + toluene + sulfolane were measured at 298.15, 313.15 and 328.15 K under atmospheric pressure. The phase diagrams for the ternary systems were presented. The reliability of the experiment data was tested using the Othmer–Tobias correlation. The LLE data were then correlated with the universal functional activity coefficient for liquid–liquid systems (UNIF-LL) and non-random two liquid using dataset 2 (NRTL/2) activity coefficient models to obtain the binary interaction parameters as programmed by the Aspen Plus simulation. The results showed that the experimental data were satisfactorily represented by both the UNIF-LL and the NRTL/2 models as revealed from the very small values of the root mean square error and the absolute deviation in composition.  相似文献   

6.
The solubility of highly selective and potent third-generation aromatase inhibitors includes the non-steroidal agents letrozole and anastrozole and the steroid exemestane in supercritical carbon dioxide (SC-CO2) has been investigated. The experiments were carried out using the simple and static method at pressures in the range of 12.1–35.5 MPa and temperatures ranging from 308 to 348 K. The mole fraction solubilities ranged from 0.22 × 10−5 to 1.88 × 10−4. Solubility data were correlated using six empirical models (Chrastil model, dV–A model, K–J model, Bartle model, Yu model and Gordillo model). The results showed that these models can be applied to satisfactory solubility predictions at different pressures and temperatures. A comparison among the six models revealed that the K–J, and Gordillo models gave much better correlations of the solubility data with an average absolute relative deviation (AARD%) ranging from 0.2 to 2.3 and from 1.6 to 2.5%, respectively. Using the correlation results, the heat of drug–CO2 solvation and that of drug vaporization was separately approximated in the range of −17.3 to −17.5 and 93.0–112.1 kJ mol−1.  相似文献   

7.
1,3,5-tri-tert-butylbenzene (TTBB) is solid at ambient conditions, and has substantial solubility in liquid and supercritical carbon dioxide. We present the phase behavior of TTBB–CO2 binary system at temperatures between 298 and 328 K and at pressures up to 20 MPa. Phase diagrams showing the liquid–vapor, solid–liquid and solid–vapor equilibrium envelopes are constructed by pressure–volume–temperature measurements in a variable-volume sapphire cell. TTBB is highly soluble in CO2 over a wide range of compositions. Single-phase states are achieved at moderate pressures, even with very high TTBB concentrations. For example, at 328 K, a binary system containing TTBB at a concentration of 95% by weight forms a single-phase above 2.04 MPa. TTBB exhibits a significant melting-point depression in the presence of CO2, 45 K at 3.11 MPa, where the normal melting point of 343 K is reduced to 298 K. With its high solubility in carbon dioxide, TTBB has potential uses as a binder or template in materials forming processes using dense carbon dioxide.  相似文献   

8.
Liquid–liquid equilibria of multicomponent systems involved in the synthesis of glycerol carbonate from dimethyl carbonate and glycerol were experimentally measured. Particularly, data for the ternary systems dimethyl carbonate + methanol + glycerol and dimethyl carbonate + glycerol carbonate + glycerol and the quaternary system dimethyl carbonate + methanol + glycerol carbonate + glycerol are provided at 333.2 K, 338.2 K and 343.2 K at atmospheric pressure since these temperatures prove relevant for the synthesis of carbonate glycerol from glycerol and dimethyl carbonate. The experimental data obtained were correlated with a good degree of agreement to the NRTL model in order to obtain the corresponding binary interaction parameters.  相似文献   

9.
Raman spectra of ternary mixtures of unknown composition are processed to extract the content of the compounds in the mixture. The evaluation method of the ternary mixtures is based on a previous calibration of binary mixtures. The applicability of the method is demonstrated by measuring the vapour liquid equilibria of the ternary system carbon dioxide, ethyl acetate and water at 8.5 MPa and 310 K and providing them in a triangle diagram. The advantages of the used flexible Raman sensor in comparison to conventional techniques for the determination of phase equilibria are discussed.  相似文献   

10.
The ternary liquid–liquid equilibria (LLE) of the following systems were analytically determined at 298.15 K and atmospheric pressure using stirred and thermo-regulated cells: {dimethyl carbonate (DMC) + methanol + water}, {DMC + ethanol + water}, {DMC + 1-propanol + water}, {DMC + 2-propanol + water}, {DMC + 1-butanol + water} and {DMC + 2-butanol + water}. The experimental ternary LLE data were correlated with the non-random two liquid (NRTL) and UNIversal QUAsiChemical (UNIQUAC) activity coefficient models. In addition, the Bachman–Brown correlation was used to ascertain the reliability of the experimental data for each system.  相似文献   

11.
Solubility of chlorpheniramine maleate in supercritical carbon dioxide at different temperatures (308–338 K) and pressures (160–400 bar) is measured using static method coupled with gravimetric method. The measured solubility data demonstrated that the solubility of chlorpheniramine maleate was changed between 1.54 × 10−5 and 4.26 × 10−4 based on the mole fraction as the temperature and pressure are changed. The general trend of measured solubility data shows a direct effect of pressure and temperature on the solubility of chlorpheniramine maleate. Finally, the obtained solubilities correlated using four semi-empirical density-based correlations including Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. Although the results of modeling showed that the KJ model leads to the average absolute relative deviation percent (AARD %) of 8.1% which is the lowest AARD %, deviation of other utilized correlations are rather the same.  相似文献   

12.
The ternary liquid–liquid equilibria (LLE) were analytically determined at 298.15 K for the following systems: {methyl tert-butyl ether (MTBE) + water + 1-ethyl-3-methylimidazolium-ethylsulfate (EMISE)}, {MTBE + water + 1-butyl-3-methylimidazolium-tetrafluoroborate ([Bmim][BF4])}, {ethyl tert-butyl ether (ETBE) + water + EMISE}and {ETBE + water + [Bmim][BF4]}.All the determination were carried out at atmospheric pressure using stirred and thermo-regulated cells. The experimental data were correlated with the well-known NRTL and UNIQUAC activity coefficient models. In addition, distribution coefficients with selectivity of the ionic liquids EMISE and [Bmim][BF4] for water in the MTBE or ETBE phase were determined.  相似文献   

13.
Pressed palm fiber (PPF), a residue obtained from palm oil industry, is a source of bioactive compounds, such as carotenoids, which are used as food additives. It also has cellulose and hemicellulose that can be used to yield fermentable sugars for the production of second generation ethanol. Supercritical fluid extraction (SFE) of pressed palm fiber provides an oil rich in carotenoids while subcritical water hydrolysis (SubWH) produces hydrolysates with high amounts of fermentable sugars. In this work, the effects of pressure (15–30 MPa) and temperature (318 and 328 K) on SFE of carotenoids were investigated. The SFE extract with highest carotenoid content was obtained at 318 K and 15 MPa (2.3% d.b., 0.81 mg β-carotene/g extract). After the extraction, the influence of process temperature (423–633 K), pressure (15 and 25 MPa), solvent:feed ratio (120 and 240), and residence time (1.25–5 min) on SubWH of the extraction residue was studied. At the temperature of 523 K, the highest total reducing sugar yield (11–23 g glucose/100 g carbohydrate) and the highest biomass conversion (40–97%) were obtained for any pressure and solvent:feed ratio. The highest selectivity for saccharide formation was found at 423 K (20–59 mol glucose/mol furfural equivalent). Optimal conditions for high saccharide formation and low sugar degradation product in subcritical hydrolysis were obtained at 523 K, 15 MPa, solvent:feed ratio of 120, residence time of 2.5 min with a total reducing sugar yield of 22.9 g glucose/100 g carbohydrate and a conversion of 84.9%.  相似文献   

14.
The solubility data of two fluorinated and non-steroidal anti-inflammatory drugs, niflumic acid (CAS No. 4394-00-7) and celecoxib (CAS No. 169590-42-5), in supercritical carbon dioxide were measured with a semi-flow type phase equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressures up to 31 MPa. At the highest extraction temperature and pressure, the solubilities are 2.09 × 10−5 and 1.52 × 10−5 in mole fraction for niflumic acid and celecoxib, respectively. The saturated solubility data were correlated with the Chrastil model, the Mendez-Santiago–Teja equation, and the Peng–Robinson equation of state. The Chrastil model fitted the experimental data to about within the experimental uncertainty. The correlated results of the Mendez-Santiago–Teja model confirmed the consistency of the solubility data over the entire experimental conditions. Incorporating with two-parameter van der Waals one-fluid mixing rules, the Peng–Robinson equation of state represents satisfactorily the gas–solid equilibrium behavior of niflumic acid and celecoxib in supercritical carbon dioxide.  相似文献   

15.
The solubilities of caffeine in supercritical CO2, supercritical CO2 + water, supercritical CO2 + ethanol, and supercritical CO2 + water + ethanol were measured with a circulation-type apparatus combined with an on-line Fourier transform infrared (FT-IR) spectrometer at 313.2 K and 15.0 MPa. The solubilities of caffeine were determined with the peak absorbances of caffeine at 1190 cm−1. The solubilities of caffeine increase until water is saturated in supercritical CO2. The maximum increase rate is 22%. In CO2 + caffeine + ethanol system, the solubilities of caffeine increase with increasing the concentration of ethanol. The solubility of caffeine becomes five times when 1000 mol m−3 of ethanol is added. In CO2 + caffeine + water + ethanol system, the solubilities of caffeine are smaller than those with single entrainer of water or ethanol. The shape of the peaks of two CO stretching bands for caffeine were changed by the addition of ethanol. It was confirmed that the interaction species of caffeine interacting with ethanol are produced by deconvolution of the CO stretching bands. The enhancement of solubility for caffeine in supercritical CO2 by the addition of ethanol is due to the hydrogen bonding between caffeine and ethanol.  相似文献   

16.
The supercritical antisolvent technology is used to precipitate polyvinylpyrrolidone (PVP) particles and crystallise ibuprofen sodium (IS) crystals separately and in the form of solid dispersion together. Supercritical carbon dioxide (scCO2) is used as antisolvent. For PVP particle generation, ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 wt% and 1.5 wt%, the operation pressure between 10 MPa and 30 MPa and the composition of ethanol/acetone solvent mixtures between 100 wt% and 0 wt% of ethanol at a constant temperature of 313 K. Furthermore, the mean molecular weight of the polymer was varied between 40 kg mol−1, 360 kg mol−1 and 1300 kg mol−1. An increase of the content of the poor solvent acetone in the initial solvent mixture as well as the usage of PVP with a higher molecular weight, leads to a significant decrease in mean particle size. At all the investigated parameters always fully amorphous PVP powder precipitates. For IS, only ethanol was used as the solvent, the initial IS concentration in the solution was varied between 1 wt% and 3 wt% and the operation pressure between 10 MPa and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallised IS crystals. Irrespective of the parameters used, always the same polymorphic form of ibuprofen sodium is produced. The solid dispersions were generated at different compositions of PVP to IS and with two different molecular weights of PVP at otherwise constant conditions. Fully amorphous solid dispersions consisting of IS and PVP together were generated at different ratios of PVP to IS.The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “non-ideal” solutes. Furthermore, the study of the “unconventional” SAS parameters, molecular weight and solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. Next to the investigation into the behaviour of both solutes separately, fully amorphous solid dispersions consisting of IS and PVP together were generated. While X-ray diffraction was used to analyze the crystalline structure of the particles, respectively, solid dispersions, their morphology was analysed using scanning electron microscopy (SEM).  相似文献   

17.
18.
Acquiring a comprehensive understanding of the phase behaviour of mixtures of crude-oil with carbon dioxide and water is a key input for reservoir engineering in processes of enhanced oil recovery and geological storage of carbon dioxide. To gain an insight, given the very complex nature of crude-oil mixtures, the study of simpler systems is of interest. In this work the system (propane + carbon dioxide + water) has been chosen as a model (light oil fraction + carbon dioxide + water) mixture. Phase equilibrium measurements have been carried out using a quasi-static-analytical high-pressure apparatus that was validated on the system (n-decane + carbon dioxide) in comparison with literature data, and used to study the system (n-decane + carbon dioxide + water) [E. Forte, A. Galindo, J. P.M. Trusler, The Journal of Physical Chemistry B 115 (49) (2011) 14591–14609]. In the present work, new experimental data have been measured for the system (propane + carbon dioxide + water) under conditions of three-phase equilibria. Compositions of the three coexisting phases have been obtained along four isotherms at temperatures from 311 to 353 K and at pressures up to the upper critical end points where the propane-rich and the carbon dioxide-rich phases become critical. The experimental data obtained for the ternary mixture have been compared to the predictions obtained with the statistical associating fluid theory for potentials of variable range (SAFT-VR). The phase behaviour of each pair of binary subsystems has been calculated using this theory and, where applicable, a modification of the Hudson and McCoubrey combining rules has been used to treat the systems predictively. Furthermore, a detailed analysis of the phase behaviour of the ternary mixture has been carried out based on comparison with available data for the constituent binary subsystems, as well as with the previous findings for the ternary (n-decane + carbon dioxide + water). Such comparison is useful to examine the effect that adding a third component has in the mutual solubility of each pair. Remarks relevant to reservoir processing are also highlighted.  相似文献   

19.
Liquid–liquid equilibrium data for {1-methyl-2-pyrrolidinone (NMP) + heterocyclic nitrogen compounds + hexadecane} systems were analytically determined at 298.15 K and atmospheric pressure using stirred and thermo-regulated cell. The experimental data were modeled with the NRTL and UNIQUAC equations. Besides, the Bachman–Brown correlation was used to ascertain the reliability of the experimental data. Additionally, excess molar volumes (VE) and deviations in the molar refractivity (ΔR) data at 298.15 K were determined for the {NMP + heterocyclic nitrogen compounds} binary systems using a digital vibrating-tube densimeter and a precision digital refractometer. The VE and ΔR data were modeled with the Redlich–Kister equation.  相似文献   

20.
An analytical apparatus has been designed to study the phase behavior of fluid mixtures of relevance to CO2-enhanced oil recovery and carbon dioxide storage in deep aquifers or depleted oil fields. The fluid phases are circulated by means of a dual-channel magnetically-coupled pump and aliquots may be withdrawn from the re-circulation loops, by means of high-pressure sampling valves, for analysis by gas chromatography. The high-pressure cell is fitted with a special probe that may be rotated in order to draw liquid into the re-circulation loop from different heights within the cell, thereby permitting the study of three-phase vapor–liquid–liquid equilibria. The working temperature range of the apparatus is from (298 to 448) K and the maximum working pressure is 50 MPa.In this work, measurements have been made on the binary system (CO2 + H2O) at temperatures from (298.15 to 448.15) K and pressure from (1.5 to 18.0) MPa, and the results are compared with the available literature data. Vapor–liquid–liquid and liquid–liquid equilibrium points were also measured at T = 298.15 K. Standard uncertainties were 0.04 K for temperature, 0.04% of reading for pressure, and typically 3 × 10−4 and 8 × 10−4 for the mole fractions in liquid and vapor phases respectively. The results have been correlated by means of an asymmetric approach based on the Peng–Robinson equation of state, for the vapor phase, and an extended form of Henry's law incorporating the NRTL solution model, for the aqueous liquid-phase. The ability of the Krichevsky–Kasarnovsky (KK) approach to correlate the data has also been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号