首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the studies on the liquefaction of three types of oil palm biomass; empty fruit bunch (EFB), palm mesocarp fiber (PMF) and palm kernel shell (PKS) using water at subcritical and supercritical conditions. The effect of temperature (330, 360, 390 °C) and pressure (25, 30, 35 MPa) on bio-oil yields were investigated in the liquefaction process using a Inconel batch reactor. The optimum liquefaction condition of the three types of biomass was found to be at supercritical condition of water i.e. at 390 °C and 25 MPa, with PKS yielding the maximum bio-oil yield of 38.53 wt%, followed by EFB and PMF, with optimum yields of 37.39 wt% and 34.32 wt%, respectively. The chemical compositions of the bio-oils produced at optimum condition were analyzed using GC–MS and phenolic compounds constituted the major portion of the bio-oils, with other minor compounds present such as alcohols, ketones, aromatic hydrocarbons and esters.  相似文献   

2.
In this work liquid CO2/propane mixtures were used to extract jojoba oil from oilseeds. First, experiments at 313 K and pressures of 70 bar and 200 bars were carried out on jojoba oil deposited on glass spheres, using different solvent concentrations (30 wt%, 50 wt% and 70 wt% CO2), to assess the influence of the solvent composition and phase behavior on the extraction rate. Then, jojoba oil was extracted from the milled seeds under homogeneous liquid conditions, using solvent mixtures containing 30 wt% and 50 wt% CO2 at 70 bar and 313 K. A solvent mixture with 30 wt% CO2 exhibited good solvent power. Oil extraction yields of 98% were obtained using a minimum solvent to oilseed mass ratio of 5 g solvent/g oilseed and operating the extractor at 313 K and 70 bar.  相似文献   

3.
β-Elemene, germacrene A and damascenine were extracted from lady-in-a-mist (Nigella damascena L.) seeds with supercritical carbon dioxide at 10–30 MPa and 40–60 °C. The influence of supercritical fluid extraction (SFE) conditions on the yield and concentration of volatiles in the extract and the extraction kinetics were studied. The extraction yields and the apparent solubility of volatile compounds increased with increasing density of CO2. The highest total yield was obtained at 30 MPa and 40 °C but the selectivity for volatiles was low under these conditions. With respect to both yield of volatiles and their concentration in extract, the best results were at 12 MPa and 40 °C, either with one separator or with additional separator maintained at 5 MPa and 25 °C. The yields of β-elemene, germacrene A and damascenine reached 0.72, 3.31 and 3.65 mg g−1 and their concentration in the extract was 2.62, 12.04 and 13.28 wt.%, respectively. Though the yields of germacrene A and damascenine were by about 20% higher using Soxhlet extraction with hexane than using SFE, their concentration in the extract where fatty oil prevailed was only 1.19 and 1.20 wt.%, respectively. Under the conditions of hydrodistillation, partial conversion of germacrene A to β-elemene occurred and its yield was higher than using the other methods but the composition of volatiles in the SFE extracts better corresponds to the original raw material.  相似文献   

4.
Bioactive components, asiatic acid and asiaticoside, were extracted from Centella asiatica using subcritical water as an extraction solvent. Extraction yields of asiatic acid and asiaticoside were measured using high-performance liquid chromatography (HPLC) at temperatures from 100 to 250 °C and pressures from 10 to 40 MPa. As temperature or pressure increased, the extraction yield of asiatic acid and asiaticoside increased. At the optimal extraction conditions of 40 MPa and 250 °C, the extraction yield of asiatic acid was 7.8 mg/g and the extraction yield of asiaticoside was 10.0 mg/g. Extracted asiatic acid and asiaticoside could be collected from water as particles with a simple filtering process. Dynamic light scattering (DLS) was used to characterize particle size. Particles containing asiatic acid were larger (1.21 μm) than particles containing asiaticoside (0.76 μm). The extraction yields of asiatic acid and asiaticoside using subcritical water at 40 MPa and 250 °C were higher than extraction yields using conventional liquid solvent extraction with methanol or ethanol at room temperature while the subcritical water extraction yields were lower than extraction yields with methanol or ethanol at its boiling point temperature.  相似文献   

5.
The objective of this study was to select a variety of pepper with high concentration of capsaicin and subject it to supercritical fluid extraction (SFE), in order to determine the best conditions of temperature (40, 50 and 60 °C) and pressure (15, 25 and 35 MPa) in terms of global yield (X0) and capsaicinoids content of the extracts. The influence of drying process (freeze and oven drying) on X0, capsaicin (C) and dihydrocapsaicin (DHC) contents and total phenolics was also analyzed. Capsicum frutescens showed the highest levels of capsaicinoids (1516 μg/g fresh fruit). For the responses C and DHC, the extraction conditions of 15 MPa and 40 °C provided the highest concentrations (C ⿿ 42 mg/g extract and DHC ⿿ 18.5 mg/g extract). The freeze drying process resulted in extracts with the highest concentration of capsaicinoids (61 mg/g extract), but in contrast, the phenolics were less susceptible to different drying processes, with a mean concentration of 35 mg GAE/g extract. The kinetics experiments indicated that the extraction rate of oleoresin was slightly slower than that of capsaicinoids at the operation conditions (40 °C and 15 MPa).  相似文献   

6.
《Fuel》2002,81(11-12):1521-1524
Daliuta subbituminous coal (DL), loaded with Fe2(MoS4)3 bimetallic catalyst, was liquefied in a 50 ml micro-autoclave with tetralin as solvent at 440 °C, initial hydrogen of 6.0 MPa, soaking time of 30 min in attempt to produce one to four ring aromatic chemicals. The catalytic effects of in situ impregnated Fe2(MoS4)3 in water solution with and without surfactant were investigated in terms of coal conversion, oil+gas yield and the yields of aromatic, aliphatic and polar compound fractions in the oil. The conversion, oil+gas, aromatics and polar compound yields of DL coal, loaded with 1 wt% daf FeMo of Fe2(MoS4)3 bimetallic catalyst, were 78.2, 70.5, 20.8 and 16.7 wt% daf, respectively, which were higher than those with 1.0 wt% Fe (based on daf coal) of Fe2S3 (62.6, 54.2, 13.4, 13.2 wt% daf, respectively) or 1.0 wt% Mo of ammonium tetrathiomolybdate (70.8, 63.2, 16.7, 14.1 wt% daf, respectively) alone under the same conditions. When the catalyst was impregnated on coal in surfactant solution, the coal conversion and product yields were further increased.  相似文献   

7.
Supercritical CO2 extraction from microalgae is applied with the aim of obtaining an oil rich in α-linolenic (ALA) essential fatty acid and with a low ω6:ω3 ratio. The maximum extraction yield is obtained at 60 °C and 30 MPa with 0.4 kg/h of CO2 and 5% of co-solvent (ethanol). When the effect of pressure, temperature and density on the supercritical extraction yield and solubility are studied, the thermodynamic cross-over is found at a pressure close to 30 MPa, while the extraction cross-over occurs at around 25 MPa. The experimental solubility data are correlated by literature empirical models. Mathematical models developed by Sovová are applied to describe the experimental extraction curves. Soxhlet extraction of lipids is also carried out, obtaining a similar fatty acids profile but proving to be less selective than SCCO2 method. Among the three species of microalgae examined, results show that Scenedesmus obliquus oil is richer in ω-3 fatty acids and ALA than Chlorella protothecoides and Nannochloropsis salina lipids. The effect of the extraction parameters on ALA content and the fatty acid profile is also analysed, concluding that the ω-3 percentage is favoured by lower temperatures, lower pressures and shorter extraction times.  相似文献   

8.
As a type of solid waste with large quantities of pollutants, municipal sewage sludge (MSS) itself and its reclamation are becoming a growing concern of governments. In this paper, the direct-utilization of MSS to prepare split tiles is proposed and tested. Without any pretreatments such as thermokinetic drying, the crude MSS from domestic wastewater treatment plant is directly incorporated into the batch mixtures, and then wet ball-milled, filter-pressed, pug-milled, extrusion-formed, dried and fired to obtain split tiles. A series of formulation experiments and physical and chemical characterizations were carried out; the results show that the feasible maximum content of the crude MSS is as high as 60 wt%, and corresponding bending strength and water absorption of split tile samples fired at 1210 °C are 25.5 MPa and 1.14 wt% respectively. TCLP test reveals that the samples are environmentally compatible. The prospective industrial application of MSS to produce split tile will help to significantly reduce its environmental impacts.  相似文献   

9.
This work is aimed to investigate the extraction of palm oil using pressurized ethanol and propane as solvents. The effects of temperature (293⿿333 K), pressure (from 10 to 20 MPa), solvent flow rate (from 1 to 5 mL/min), and composition of the solvent mixture were evaluated on the oil extraction yield, and chemical profile of the extracted oils. The experiments were conducted in a 100 mL extractor coupled to a HPLC pump for ethanol and a syringe pump for the propane displacement. Global yields up to 75 wt% were obtained in the experiments. The kinetic profiles of the extractions were described by the Sovová⿿s model, which presented good agreement with the experimental observations. The palm oils extracted with distinct solvents were characterized regarding its density and viscosity in a temperature range from 293 to 343 K, its chemical profile determined by GC/MS, and carotenoid content.  相似文献   

10.
Hydrothermal liquefaction of lignocellulosic biomass (wheat straw) into bio-oil has been investigated under subcritical conditions (temperature up to 350 °C, pressure up to 200 bar) in water and water–alcohol mixtures using ethanol and isopropanol in a continuously operated tubular reactor. The effect of different reaction parameters such as temperature, pressure and water–alcohol ratio on the biomass conversion, cracking products yield and the higher heating value (HHV) of the received bio-oil was studied. The water–ethanol mixture was found to be a very reactive medium showing a complete biomass conversion and >30 wt% yield of high caloric oil (HCO). A maximum HHV of 28 MJ/kg for HCO was achieved. In addition, Ru (5 wt%) on H-Beta support was used as catalyst in a run with hydrogen in the feed showing deeper deoxygenation of reaction intermediates and highest HHV of the product oil (30 MJ/kg). This work demonstrated the usability of water–ethanol mixtures for an effective depolymerization of lignocellulosic biomass to bio-oils under subcritical reaction conditions with more than doubled HHV compared to the feedstock, in particular using a catalyst and the presence of hydrogen for further deoxygenation.  相似文献   

11.
Near-supercritical and supercritical CO2 was used to extract low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood. Extraction of samples containing sapwood and knotwood was carried out at 10⿿25 MPa and 30⿿50 °C to assess the influence of the operational conditions on the yields of total extracts and phenolics, as well as on the radical scavenging capacity of extracts. The use of ethanol as a co-solvent increased both the extraction yields and the concentration of phenolics in extracts. Operating under selected conditions (25 MPa, 50 °C, 10% ethanol), the extraction yield accounted for 4.1 wt% of the oven-dry wood. The extracts contained up to 7.6 g of phenolic compounds (measured as gallic acid equivalents) per 100 g extract, and showed one third of the radical scavenging capacity of Trolox. Native resin acids accounted for about 24 g per 100 g extracts, whereas flavonoids, lignans, stilbenes and juvabiones were found at lower proportions.  相似文献   

12.
In this work different samples of Brazilian macauba oil obtained from mechanical pressing were characterized and production of esters of fatty acids using a catalyst-free continuous process under supercritical alcohols was assessed. Analysis of oil samples showed that the major fatty acid on pulp oil was oleic acid (mean value 62.8%), the amount of free fatty acid (FFA) was very high (37.4–65.4%), samples contained glycerides (7.4–16.5% TAG, 14.2–16.8% DAG and 1.0–3.4% MAG) and moisture was around 1.0%. Oil was processed in a continuous reactor using supercritical methanol or ethanol and the effects of temperature (573, 598, 623 and 648 K), pressure (10, 15 and 20 MPa), oil to alcohol molar ratio (1:20, 1:30 and 1:40), water concentration (0, 5 and 10 wt% added) and the flow rate of reaction mixture (1.0, 1.5, 2.0, 2.5 and 3.0 mL/min) on process efficiency were evaluated. The highest ester content achieved in reactions with supercritical methanol was 78.5% (648 K, 15 MPa, 1:30 oil:methanol molar ratio, 5 wt% water and 2.5 mL/min flow rate), while with supercritical ethanol was 69.6% (598 K, 15 MPa, 1:30 oil:ethanol molar ratio, 5 wt% water and 2.0 mL/min flow rate). The extent of the reaction was explored using a novel parameter, convertibility, which corresponds to the maximum ester content attainable from the feedstock. According to the convertibility of macauba pulp oil, the highest ester content corresponded to efficiencies of 98.0% and 86.9%, respectively. Results demonstrate that macauba oil might be a potential alternative for biodiesel production, though purification steps should be taken into account to achieve biodiesel specifications.  相似文献   

13.
Pressed palm fiber (PPF), a residue obtained from palm oil industry, is a source of bioactive compounds, such as carotenoids, which are used as food additives. It also has cellulose and hemicellulose that can be used to yield fermentable sugars for the production of second generation ethanol. Supercritical fluid extraction (SFE) of pressed palm fiber provides an oil rich in carotenoids while subcritical water hydrolysis (SubWH) produces hydrolysates with high amounts of fermentable sugars. In this work, the effects of pressure (15–30 MPa) and temperature (318 and 328 K) on SFE of carotenoids were investigated. The SFE extract with highest carotenoid content was obtained at 318 K and 15 MPa (2.3% d.b., 0.81 mg β-carotene/g extract). After the extraction, the influence of process temperature (423–633 K), pressure (15 and 25 MPa), solvent:feed ratio (120 and 240), and residence time (1.25–5 min) on SubWH of the extraction residue was studied. At the temperature of 523 K, the highest total reducing sugar yield (11–23 g glucose/100 g carbohydrate) and the highest biomass conversion (40–97%) were obtained for any pressure and solvent:feed ratio. The highest selectivity for saccharide formation was found at 423 K (20–59 mol glucose/mol furfural equivalent). Optimal conditions for high saccharide formation and low sugar degradation product in subcritical hydrolysis were obtained at 523 K, 15 MPa, solvent:feed ratio of 120, residence time of 2.5 min with a total reducing sugar yield of 22.9 g glucose/100 g carbohydrate and a conversion of 84.9%.  相似文献   

14.
Hydrothermal conversion is an interesting process to transform (very) humid biomass into high energy vectors or valuable products in the liquid or solid state. In the supercritical domain, water becomes a solvent for organics as well as a reactant, and thus the cellulosic content is effectively hydrolyzed into glucose, largely considered as its model molecule.The kinetics of glucose decomposition during the heating step in the batch reactor were investigated through the analysis of glucose concentration. Glucose reacts totally before reaching the supercritical point of water. Among the operating parameters that influence supercritical water gasification, this paper presents only the effect of reaction temperature through gas composition, liquid carbon content and structure of the solid. Glucose gasification in a batch process (5 wt% glucose, 0.5 wt% catalyst, 600 °C, 25 MPa, 60 min) produced 1.5 mol of hydrogen per mol of glucose. The gas has energetic properties (H2, CH4, C2H6) while the liquid contains substances that could be used as platform molecules (5-HMF). The solid phase is composed of carbon (almost pure) in two distinct phases: spherical nanoparticles and an amorphous phase.  相似文献   

15.
The present work deals with the application of the supercritical fluid extraction process to extract essential oils from the leaves of an Algerian myrtle plant (Myrtus communis L.). Using the surface response methodology, an optimization of the extraction recovery was carried out, varying the pressure in the range of [10–30 MPa], the temperature within [308–323 K], a solvent flow rate fixed at 0.42 kg h−1 and a mean particle diameter equal to 0.5 mm or less than 0.315 mm. The maximum value of essential oil recovery relative to the initial mass of leaf powder was 4.89 wt%, and was obtained when the SC–CO2 extraction was carried out under 313 K, 30 MPa and with a particle diameter less than 0.315 mm. A second-order polynomial expression was used to express the oil recovery. The calculated mass of recovered oil using the response surface methodology was very close to the experimental value, confirming the reliability of this technique.  相似文献   

16.
The extraction of lipids from both wet and dry biomass produced by fermentation has been carried out using near-critical dimethylether (DME) as the extraction solvent. Fermentations were carried out from a shake flask up to a 300 L scale using the microorganism Mortierella alpina, and up to a 20 L scale for Phaffia rhodozyma and Agrobacterium tumefaciens. The lipids extracted at a laboratory and pilot scale from the biomasses were enriched in arachidonic acid, astaxanthin, and co-enzyme Q10 respectively. Extractions were also performed on marine microalgae, produced by a proprietary fermentation process, to obtain lipids rich in EPA. Lipids were extracted from wet biomass using DME, which removes the need to dry the biomass. Water is also co-extracted, which has to be separated from the lipid. The biomass shrunk considerably during packed bed extraction of wet biomass, leading to channelling. Repacking and re-extraction of the packed bed enabled full lipid yields to be obtained. The extraction of lipids from biomass suspended in fermentation broth showed considerable promise, and lipid yields were improved due to the recovery of lipids that had been exuded into the broth from the microorganism. In contrast, the extraction of lipids from freeze-dried biomass using DME was routine, yields were substantially higher than using CO2 or CO2 + ethanol, but were lower than from wet biomass. DME also extracted polar lipids from both wet and dry biomass, leading to the higher total lipid yields compared to CO2. Separate extraction of non-polar and polar lipids was possible by sequential extraction of dry biomass using initially CO2 followed optionally with ethanol co-solvent; and then DME.  相似文献   

17.
A one pot synthesis of alkyd resins based on the Camelina sativa oil as a new renewable raw material and on polyglycerols as polyols was carried out. The oligomerization of glycerol was conducted in the presence of LiOH (0.1 wt%) at 245 °C. The total content of diglycerol reached its maximum (about 33.5 wt%) after 7 h. The oligomerization product with no additional treatment was subjected to the alcoholysis reaction with purified camelina oil. The alkyd resin was obtained after polycondensation of the alcoholysis products with phthalic and maleic anhydrides at 230–250 °C. A real possibility was determined for the synthesis of alkyd resins with some properties similar to those which can be found in equivalent products manufactured on the basis of semi drying oil and pentaerythritol like flexibility and drying time.  相似文献   

18.
This study focused on the use of pressurized CO2 as a reaction medium for the enrichment of docosahexaenoic acid (DHA) from tuna oil fatty acids via lipase-mediated esterification. Of the three lipases tested, Lipozyme RM IM from Rhizomucor miehei was selected for further study. Enzyme loading, water addition, and reaction time were also explored. Near-supercritical CO2, prepared at 25 °C and 8.3 MPa, was the most effective reagent tested for enriching DHA from the residual fatty acid fraction. In addition to near-supercritical CO2, optimal conditions included addition of 0.2 wt% (based on total substrates) water, enzyme loading of 5 wt% (based on total substrates), and a reaction time of 18 h. The DHA concentration and recovery yield for the residual fatty acid fraction under these optimal conditions were 75.8 wt% and 81 wt%, respectively.  相似文献   

19.
Supercritical fluid extraction from freeze-dried Eruca sativa leaves is assessed with the aim of studying the feasibility to obtain bioactive enriched fractions containing different classes of valuable compounds. Total extraction yields and compositions using pure CO2 and CO2 + selected co-solvents are compared. Overall extraction curves, fitted by the model of broken and intact cells developed by Sovová, are reported and the influence of the main parameters that affect the extraction process is analysed. The extract with the highest content in glucosinolates and phenols was collected at 30 MPa and 75 °C using 8% (w/w) of water with respect to the CO2 flow rate, whereas the fraction richest in lipids was obtained using 8% (w/w) of ethanol as co-solvent at 45 °C and 30 MPa. A process including a first step with supercritical CO2 extraction using water as co-solvent followed by a second step, where a fraction rich in lipids is extracted using ethanol as co-solvent, is proposed. SCCO2 results are compared with Soxhlet and other methods that combine organic solvents with ultrasounds.  相似文献   

20.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号