首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As solar heating systems become a commercial reality, greater efforts are now being employed to incorporate solar cooling components in order to obtain a complete solar heating and cooling system and thus take advantage of the cost-effectiveness of year-round use of the solar equipment. Because of the exceptional performance and high efficiency of evacuated tube solar collectors, these advanced collectors are receiving considerable attention for use in solar heating and cooling systems. While improved performance is readily obtained with these sophisticated solar collectors, there are also numerous difficulties and problems associated with their use in a solar system. This paper addresses many of the design considerations which must be included in any realistic solar system design. Most of the considerations presented here are based on the experience gained in the design and performance of the solar heating and cooling systems for CSU Solar Houses I-IV.  相似文献   

2.
On a European level there is intense research activity to broaden the applications of solar thermal systems beyond their established domains (hot water, space heating support) and to foster their participation in the energy maps of the EU-Member States. Concentrated Solar Thermal (CST) systems are expected to play a key role in this effort, especially for achieving the medium and high temperatures needed, for electricity generation, for industrial applications but also for hybridized solar heating/cooling and desalination applications.This paper presents a proposal for implementation of a CST system in the building sector, based on a research carried out in the Laboratory of Environmental and Energy Efficient Design of Buildings and Settlements at the University of Thrace. Specifically, an integrated solar cooling system using parabolic trough solar collectors and double-effect chiller is discussed, used to cover the cooling needs of typical office building in Greece.As it was shown, the use of concentrating solar collectors leads to significantly higher output temperatures that can enable the use of two stage absorption chillers with a higher COP. Alternatively, when low or medium temperature heat is required, the use of CST systems takes less space to cope with it than traditional flat plate collectors. The combination of these parameters can contribute to removing key barriers associated with the broader diffusion of solar cooling technology, enhancing the potential to become more competitive to the conventional air conditioning technologies.  相似文献   

3.
A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m2 of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided.  相似文献   

4.
Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on integration of solar collectors into buildings. The facades of buildings can be important solar collectors, and, therefore, become multifunctional. In addition, solar collectors can be used to enhance the appearance of the facade when considering their aesthetic compatibility. Currently, installation of collectors on the south tilted roofs, south walls, balconies or awnings of buildings are the feasible approaches for integration of solar collectors into buildings. The most well known solar energy demonstration projects in China are introduced in this paper, which cover different integrated approaches, and solar heating and cooling systems. In China's cities, the process of rebuilding apartment roofs from flat to inclined offers the ideal opportunity to carry out solar renovation in combination with roof-integrated collectors. It can be seen from the demonstration projects over the last twenty years, that, solar cooling systems were mainly used in public buildings for either absorption or adsorption. Besides, nearly all solar cooling systems are multifunctional. They have been used to supply heating and hot water in other seasons for the purpose of high solar fraction. In the 11th Five-year research project (duration 2006–2010), the government has encouraged solar energy researchers to study, develop, and break through the key technologies involved in the integration of solar thermal technologies with buildings.  相似文献   

5.
The use of solar energy for domestic water heating and space heating has proved to be viable. Space cooling is another promising avenue for utilization of solar energy. Solar operated absorption air-conditioning systems, in different situations, have been found to be feasible. Such systems can make use of the expensive collectors which are, in any case, installed for water and space heating.

In this paper the cooling of a prototype house, in Kufra, is reported. Starting with measured radiation and ambient data, calculations are performed on an hourly basis to determine the cooling load, radiation in the collector plane, heat delivered by the collectors and the heat stored in or discharged from the storage tank. Three different types of collectors with varying efficiencies are considered. These collectors are of the evacuated tube, selective coated and black painted types. The study confirms that the water-lithium bromide absorption system can provide summer air conditioning in arid zones of Jamahiriya where there are diffuclties with the supply of electricity and fossil fuels.  相似文献   


6.
V.M. Puri 《Energy》1979,4(5):769-774
In this paper, a state-of-the-art of solar heating and cooling systems is presented. Solar air heaters and different types of solar water collectors are discussed in detail. Storage systems including water, rocks, and heat-of-fusion salts are described as are space heating systems employing solar air heaters, in conjunction with rock or heat-of-fusion salt storage, and the use of water collectors plus hot water storage for space heating and domestic hot water. An indication of the commercialization of various space-heating systems and broad economic projections are presented. The three major solar cooling methods—absorption cooling, solar mechanical systems, and those involving humidification-dehumidification cycles—are also discussed in detail. Finally, an overview of solar heating and cooling activities in Kuwait is also given.  相似文献   

7.
In the past decades, solar water collectors were installed for the main purpose of preheating domestic hot water or to cover a fraction of the space heating demand in China. However, solar cooling systems were constructed just for demonstration purposes. Since the building of the first solar-powered absorption cooling system in Shenzhen in 1987, there have been over 10 additional solar cooling demonstration projects constructed. In this paper, the most representative five projects including both absorption and adsorption cooling systems are introduced and summarized. From the demonstrations, solar absorption cooling systems have been shown to be more suitable for large building air-conditioning systems. Comparatively, solar adsorption cooling systems are more promising for small size air-conditioning systems. In order to attain high utilization ratio, it is highly recommended to design solar-powered integrated energy systems in public buildings. In addition, highly efficient heat pumps are considered as the most appropriate auxiliary heat sources for solar cooling systems, for the purpose of all-weather operation. In the 11th Five year research project (duration 2006–2010), solar cooling technologies will be further investigated to achieve a breaking through in the integration of solar cooling systems with buildings.  相似文献   

8.
9.
Solar cooling is a novel approach, which primarily makes use of solar energy, instead of electricity, to drive the air-conditioning systems. In this study, solar-assisted desiccant cooling system (SADCS) was designed to handle the cooling load of typical office in the subtropical Hong Kong, in which half of the building energy is consumed by the air-conditioning systems. The SADCS mainly consisted of desiccant wheel, thermal wheel, evaporative coolers, solar air collectors and gas-fired auxiliary heater, it could directly tackle both the space load and ventilation load. Since the supply air flow is same as the outdoor air flow, the SADCS has a feature of sufficient ventilation that enhances the indoor air quality. Although it is inevitable to involve the auxiliary heater for regeneration of desiccant wheel, it is possible to minimize its usage by the optimal design and control scheme of the SADCS. Through simulation–optimization approach, the SADCS can provide a satisfactory performance in the subtropical Hong Kong.  相似文献   

10.
以能源平均成本和动态投资回收期为经济性指标,对采用平板集热器、真空管集热器、复合抛物面集热器和槽式集热器驱动的太阳能单效溴化锂吸收式制冷系统进行了对比分析,同时以?效率和动态投资回收期为目标对优选的太阳能制冷系统进行了多目标优化。结果表明:采用真空管集热器的太阳能制冷系统的能源平均成本最低及动态投资回收期最短;发生器热水进口温度存在最优值使得系统?效率最高,能源平均成本最低;增加系统装机容量可有效降低系统的能源平均成本并且缩短投资回收期;太阳辐照强度越大,太阳能制冷系统的能源平均成本越低及投资回收期越短。此外,多目标优化结果表明发生器热水进口温度存在最优值可使得综合目标函数取得最小值。  相似文献   

11.
为减小太阳能空气源热泵供暖系统的综合成本和碳排放量,提高热泵运行效率及太阳能使用率,提出一种基于模糊层次分析法的多目标优化设计方法。采用TRNSYS,搭建复合供暖系统仿真模型,通过参数化分析选出7个系统参数作为优化变量,提出复合供暖系统综合评价指标,运用模糊层次分析法确定每个因素的权重并定义综合目标函数并通过正交试验法得到最终优化方案。通过仿真试验对比复合供暖系统优化前后的运行性能,验证了该优化方法的有效性。  相似文献   

12.
Building cooling heating power (BCHP) systems as a kind of distributed energy resource have shown a great potential in improving energy efficiency and meeting multiple energy demands in buildings. In this paper, we present a BCHP system driven by solar energy with flat‐plate solar collectors. A modified system efficiency is introduced to evaluate the whole day performance of the system more accurately. Based on the mathematical models and simulation platform established, we have investigated the influences of some key thermodynamic parameters, namely condensation temperature, turbine inlet temperature and turbine inlet pressure on the system performance. In order to find the optimum combination of these parameters that leads to the best performance, we have performed parametric optimization by means of the genetic algorithm. Results indicate that the best performance and the highest efficiency of the system are achieved when the working fluid reaches its saturated state and the corresponding efficiencies of the system operating in the combined heating power mode, the combined cooling power mode and the power production mode turn out to be 19.10%, 27.24% and 10.47%, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a methodology is proposed to determine the design space for synthesis, analysis, and optimization of solar water heating systems. The proposed methodology incorporates different design constraints to identify all possible designs or a design space on a collector area vs. storage volume diagram. The design space is represented by tracing constant solar fraction lines on a collector area vs. storage volume diagram. It has been observed that there exists a minimum as well as a maximum storage volume for a given solar fraction and collector area. Similarly existence of a minimum and a maximum collector area is also observed for a fixed solar fraction and storage volume. For multi-objective optimization, a Pareto optimal region is also identified. Based on the identified design space, the solar water heating system is optimized by minimizing annual life cycle cost. Due to uncertainty in solar insolation, system parameters and cost data, global optimization may not be utilized to represent a meaningful design. To overcome this, a region of possible design configurations is also identified in this paper.  相似文献   

14.
Heating, cooling and lighting appliances in buildings account for more than one third of the world's primary energy demand and there are great potentials, which can be obtained through better applications of the energy use in buildings. In this regard, the building sector has a high potential for improving the quality match between energy supply and demand because high temperature sources are used to meet low-temperature heating needs. Low exergy (or LowEx) systems are defined as heating or cooling systems that allow the use of low valued energy, which is delivered by sustainable energy sources (i.e., through heat pumps, solar collectors, either separate or linked to waste heat, energy storage) as the energy source. These systems practically provide heating and cooling energy at a temperature close to room temperature while the so-called LowEx approach, which has been and still being successfully used in sustainable buildings design.The present study comprehensively reviews the studies conducted on LowEx heating and cooling systems for establishing the sustainable buildings. In this context, an introductory information is given first. Next, energy utilization and demand in buildings are summarized while various exergy definitions and sustainability aspects along with dead (reference) state are described. LowEx heating and cooling systems are then introduced. After that, LowEx relations used to estimate energy and exergy demand in buildings and key parameters for performance assessment and comparison purposes are presented. Finally, LowEx studies and applications conducted are reviewed while the last section concludes. The exergy efficiency values of the LowEx heating and cooling systems for buildings are obtained to range from 0.40% to 25.3% while those for greenhouses vary between 0.11% and 11.5%. The majority of analyses and assessments of LowEx systems are based on heating of buildings.  相似文献   

15.
Solar heating systems in buildings have increasingly been studied in the past two decades. In several applications the primary energy demand is now for both heating and cooling, and modern solar collectors should be designed to provide climatization during the whole year. Solar systems are seldom applied in Europe, and large buildings, such as office buildings and schools, continue to be built with mechanical ventilation systems.The study presented in this paper is part of a European XVII Thermie project entitled “Pilot project for photovoltaic, energetic and biohousing retrieval in a school”, whose aim was to install a photovoltaic plant and solar air collectors coupled with a sun breaker structure at a scientific high school in Umbertide, in central Italy.This paper describes the research and development activities concerning a solar air collector suited for winter heating and summer ventilation, which was installed at the high school. The collector physical and numerical modelling of heat transfer and fluid flow in winter operation is presented. The system performance has been estimated as a function of different parameters in order to provide a tool for the design process. Furthermore, the climate in the area has been simulated through the available experimental data, and the system behavior under these conditions is presented.The collectors were installed at the scientific high school in Umbertide in spring 2001. Summer ventilation cooling is under testing and an experimental test period is foreseen next winter to validate the design of the collectors and their performance.  相似文献   

16.
Integrated photovoltaic–thermal solar collectors have become of great interest in the solar thermal and photovoltaic (PV) research communities. Solar thermal systems and solar PV systems have each advanced markedly, and combining the two technologies provides the opportunity for increased efficiency and expanded utilization of solar energy. In this article, the authors critically review photovoltaic–thermal solar collectors for air heating. Included is a review of photovoltaic thermal technology and recent advances, particularly as applied to air heaters. It is determined that the photovoltaic–thermal (PV/T) air heater is or may in the future be practicable for preheating air for many applications, including space heating and drying, and that integrated PV/T collectors deliver more useful energy per unit collector area than separate PV and thermal systems. Although PV/T collectors are promising, it is evident that further research is required to improve efficiency, reduce costs and resolve several technical design issues related to the collectors.  相似文献   

17.
The gross solar energy falling on a typical house during the heating season is greater than the space heating requirement. Conventional solar collectors produce hot water, which is then used to meet the domestic hot water and space heating requirements of the house. Such collectors, however, are expensive, and it is only possible to use them to collect a small proportion of the available solar energy. This paper looks at an alternative approach of using the entire wall surface as a passive solar collector, by using an external layer of translucent insulation. Measurements and calculations are reported which show that a wall with a double-glazed outer layer would be expected to show a zero net heat loss over the heating season. This is not considered to be sufficient advantage to overcome the cost and other problems associated with the system.  相似文献   

18.
A large number of industrial processes demand thermal energy in the temperature range of 80–240 °C. In this temperature range, solar thermal systems have a great scope of application. However, the challenge lies in the integration of a periodic, dilute and variable solar input into a wide variety of industrial processes. Issues in the integration are selection of collectors, working fluid and sizing of components. Application specific configurations are required to be adopted and designed. Analysis presented in this paper lays an emphasis on the component sizing. The same is done by developing a design procedure for a specific configuration. The specific configuration consists of concentrating collectors, pressurized hot water storage and a load heat exchanger. The design procedure follows a methodology called design space approach. In the design space approach a mathematical model is built for generation of the design space. In the generation of the design space, design variables of concern are collector area, storage volume, solar fraction, storage mass flow rate and heat exchanger size. Design space comprises of constant solar fraction curves traced on a collector area versus storage volume diagram. Results of the design variables study demonstrate that a higher maximum storage mass flow rates and a larger heat exchanger size are desired while limiting storage temperature should be as low as possible. An economic optimization is carried out to design the overall system. In economic optimization, total annualized cost of the overall system has been minimized. The proposed methodology is demonstrated through an illustrative example. It has been shown that 23% reduction in the total system cost may be achieved as compared to the existing design. The proposed design tool offers flexibility to the designer in choosing a system configuration on the basis of desired performance and economy.  相似文献   

19.
In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H2O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation.The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis.The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems.  相似文献   

20.
The present study deals with a small-scale solar-assisted absorption cooling system having a cooling capacity of 3.52 kW and was investigated experimentally under the climatic conditions of Taxila, Pakistan. Initially, a mathematical model was developed for LiBr/H2O vapor absorption system alongside flat-plate solar thermal collectors to achieve the required operating temperature range of 75°C. Following this, a parametric analysis of the whole system was performed, including various design and climate parameters, such as the working temperatures of the generator, evaporator, condenser, absorber, mass flow rate, and coefficient of performance (COP) of the system. An experimental setup was coupled with solar collectors and instruments to get hot water using solar energy and measurements of main parameters for real-time performance assessment. From the results obtained, it was revealed that the maximum average COP of the system achieved was 0.70, and the maximum outlet temperature from solar thermal collectors was 75°C. A sensitivity analysis was performed to validate the potential of the absorption machine in the seasonal cooling demand. An economic valuation was accomplished based on the current cost of conventional cooling systems. It was established that the solar cooling system is economical only when shared with domestic water heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号