首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive extraction using supercritical carbon dioxide (scCO2) and tri-n-octylamine (TOA) was evaluated as a separation method of succinic acid from an aqueous solution. The reactive extraction of succinic acid was performed at varying initial acid concentrations in aqueous solution (0.07–0.45 mol?dm?3), temperature (35–65°C) and pressure (8–16 MPa). The succinic acid separation was conducted in both batch mode and semi-continuous mode. The highest reactive extraction efficiency of approx. 62% was obtained for the process conducted in semi-continuous mode at 35°C and 16 MPa for the initial acid concentrations in aqueous phase of 0.39 mol?dm?3.  相似文献   

2.
Cross-linking polymerization of acrylic acid in supercritical carbon dioxide (scCO2) was studied in a batch reactor at 50 °C and 207 bar with either triallyl pentaerythritol ether or tetraallyl pentaerythritol ether as the cross-linker and with 2,2′-azobis(2,4-dimethyl-valeronitrile) as the free radical initiator. All polymers were white, dry, fine powders. Scanning electron microscopy showed that the morphology of the polymer particles was not affected by cross-linking. As the cross-linker concentration was increased, the polymer glass transition temperature first decreased, then increased. Water-soluble and water-insoluble polymers were synthesized by adjusting the cross-linker concentration. Viscosity measurements showed that the polymer thickening effect strongly depended on the degree of cross-linking. Finally, cross-linking polymerization of acrylic acid in scCO2 was carried out in a continuous stirred tank reactor. The use of cross-linker decreased the monomer conversion in this system.  相似文献   

3.
Solubility of chlorpheniramine maleate in supercritical carbon dioxide at different temperatures (308–338 K) and pressures (160–400 bar) is measured using static method coupled with gravimetric method. The measured solubility data demonstrated that the solubility of chlorpheniramine maleate was changed between 1.54 × 10−5 and 4.26 × 10−4 based on the mole fraction as the temperature and pressure are changed. The general trend of measured solubility data shows a direct effect of pressure and temperature on the solubility of chlorpheniramine maleate. Finally, the obtained solubilities correlated using four semi-empirical density-based correlations including Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. Although the results of modeling showed that the KJ model leads to the average absolute relative deviation percent (AARD %) of 8.1% which is the lowest AARD %, deviation of other utilized correlations are rather the same.  相似文献   

4.
The experimental techniques used to obtain the solubilities of clozapine and lamotrigine in supercritical carbon dioxide include a simple static technique. The solubility measurements were performed at temperatures between 318 and 348 K and pressures between 121.6 and 354.0 bar. These chemicals have solubilities with values ranging from 3.6 × 10−6 to 4.2 × 10−5 (clozapine) and 1 × 10−6 to 6 × 10−5 (lamotrigine) mole fraction. The solubility data were correlated using four semi-empirical density-based models (Chrastil, Bartle, K-J and M-T models). Correlation of the results shows good self-consistency of the data obtained with the Bartle model for clozapine with an overall average absolute relative deviation (AARD%) of 11.21. The calculated results with each four models show satisfactory agreement with the experimental data for lamotrigine with an overall AARD% 11.72, 8.99, 2.75, 3.86 for Chrastil, K-J, Bartle, M-T models, respectively. Using the correlation results, the heat of drug-CO2 solvation and that of drug vaporization were approximated.  相似文献   

5.
Solubility of solute in supercritical fluids at different pressures and temperatures is one of the most important parameters necessary for design of any supercritical fluid-based processes. Among different supercritical fluids, carbon dioxide is one of the most widely used solvents due to its useful and green characteristics. In this work, with the assist of supercritical carbon dioxide as the solvent, solubility of cyproheptadine in different temperatures (308–338 K) and pressures (160–400 bar) are measured using static method. The obtained results demonstrated that solubility of cyproheptadine ranged between 3.35 × 10−5 and 3.09 × 10−3 based on mole fraction. A closer examination of measured solubility data show that not only solubility of cyproheptadine increases by increasing pressure but also experiences a cross over pressure about 200 bar. At last, the measured solubility data are correlated using four widely used density based correlations namely Mendez Santiago–Teja (MST), Kumar and Johnston (KJ), Bartle et al., and Chrastil models. The obtained results demonstrated that the best correlative capability was observed for KJ model leads to the average absolute relative deviation percent (AARD %) of 6.3%.  相似文献   

6.
Supercritical carbon dioxide was used for partially selective extraction of triacetin from a mixture of triacetin, diacetin, and monoacetin with a molar ratio of 1:2:1. The extraction was carried out in two stages. In the first stage, a central composite design was used to optimize the four variables of pressure, temperature, liquid CO2 flow rate, and extraction time at three levels using a semi-continuous, supercritical carbon dioxide extraction setup. The composition of the extract under the predicted optimum conditions (i.e., 109 bar, 56 °C, 0.86 mL min−1, and 61 min) was about 69% triacetin accompanied by only 30% diacetin and no detectable monoacetin. In the second stage, the effect of the two factors, pressure (100, 109, and 140 bar) and liquid CO2 flow rates of 0.86 and 1.5 mL min−1 measured at average laboratory temperature (27 °C) and pressure (0.89 bar), were studied using a continuous, supercritical carbon dioxide fractionation setup equipped with a glass-bead packed column kept under a thermal gradient of 56-70 °C. The experimental design was organized as a 3 × 2 general factorial design. Under the best conditions (i.e., 140 bar and 1.5 mL min−1), the extraction yield of triacetin and diacetin were 41.8 and 3.0%, respectively, without any detectable monoacetin as verified by GC-FID.  相似文献   

7.
The purpose of this study was to investigate obtaining of caffeine from tea plant wastes by supercritical carbon dioxide extraction. Experiments were carried out with tea stalk and fiber wastes of Turkish tea plants that has no economical value. Stalk and fiber wastes were supplied from tea factories. These wastes were ground, sieved and dried at 105 °C temperature in an oven. Parameters affecting caffeine leaching from tea wastes were determined to be, extraction time, extraction temperature, carbon dioxide flow rate, process pressure and particle size. The maximum yield of caffeine from tea stalk wastes and fiber wastes were 14.9 mg/g tea stalk and 19.2 mg/g tea fiber, respectively. The yield increase had been recorded as 61.9% and 65.5%, respectively, in comparison with the chloroform extraction of tea stalk and fiber wastes.  相似文献   

8.
In this study, supercritical carbon dioxide extraction of proantocyanidins (PRCs) was performed and the effect of different pressure, temperature and ethanol percentage was investigated. High performance liquid chromatography was used for the analysis of the compounds and it was found that the most effective parameter on the extraction was the amount of the ethanol percentage. Each compound was extracted from grape seeds at their maximum level when different parameters were used which was probably because of their different polarities. Gallic acid (GA), epigallocatechin (EGC) and epigallocatechingallate (EGCG) were extracted at their maximum level when the 300 bar 50 °C and 20% of ethanol was used. The maximum amount of catechin (CT) and epicatechin (ECT) were obtained when 300 bar 30 °C and 20% of ethanol was used for extraction, and 250 bar, 30 °C and 15% of ethanol was needed to extract highest amount of epicatechingallate (ECG).  相似文献   

9.
A new empirical equation is proposed to correlate solute solubility in supercritical carbon dioxide (SCCO2). The new empirical model has four parameters per each solute that can be obtained by correlation of the experimental solubility data. The input variables of the equation are pressure, temperature and density of pure SCCO2. The new equation is applied for correlation of solubility of 24 compounds in SCCO2 at wide range of temperatures and pressures. The overall percent of absolute average relative deviation (%AARD) of the new equation for correlation of the experimental data is 6.54%. Comparison of the results of the present model with a three-parameter and a four-parameter empirical model demonstrates good accuracy of the new empirical model.  相似文献   

10.
This study was aimed to measure the solubility of carvedilol in the temperature and pressure ranges of 308⿿338 K and 160 bar to 400 bar, respectively. In this direction, a homemade high pressure visual equilibrium cell was used to measure the solubility of carvedilol using a static method coupled with gravimetric technique. The results revealed that the carvedilol solubility was ranged between 1.12 ÿ 10⿿5 and 5.01 ÿ 10⿿3 based on the mole fraction (mole of carvedilol/mole of carvedilol + mole of CO2) in this study as the temperature and pressure was changed. Finally, the results were correlated using four density-based semi-empirical correlations including Chrastil, Mendez⿿Santiago⿿Teja (MST), Bartle et al., and Kumar and Johnston (K-J) models. Results revealed that although the K-J model leads to the lowest average absolute relative deviation percent (AARD %) of 6.27%, but it could not be considered as the most accurate correlation since all the used four correlations introduces AARD % of about 6⿿10% which may be in the same range as the experimental error.  相似文献   

11.
The solubilities of three active pharmaceutical ingredients (APIs) in supercritical carbon dioxide were measured in this study using a semi-flow apparatus. These APIs are chlormezanone (C11H12ClNO3S), metaxalone (C12H15NO3) and methocarbamol (C11H15NO5) that are all used as skeletal muscle relaxants. The solubility data are reported for three isotherms at 308.2, 318.2 and 328.2 K, with the pressure range from 12 to 24 MPa. Most solubility data are within the range of 10−6 to 10−4 mole fraction for each API. The crossover phenomena were observed from the experimental results for all three systems. These solubility data satisfied the thermodynamic consistency tests. They were then correlated using three semi-empirical models. With the optimally fitted binary interaction parameters, satisfactory correlation agreement is presented for each binary mixture.  相似文献   

12.
Supercritical fluid technology (SFT) as a new technique is very important for clean environment and removal of chemical pollutants. The lack of solubility data of solid solute in certain supercritical fluid is a great obstacle to the successful implementation of SFT. In this work, the solubility of bisphenol A in supercritical carbon dioxide was determined by the dynamic method at the temperatures ranging from 308 to 328 K and pressure range of 11.0–21.0 MPa. The effects of temperature and pressure on solubility were analyzed according to molecular motion theory. The solubility data were correlated using eight different semi-empirical models (Chrastil, Adachi–Lu, Kumar–Johnston, Tang, Sung–Shim, Bartle, Méndez Santiago–Teja and Yu). The comparison between different models was discussed. The thermodynamic properties (total enthalpy ΔH, enthalpy of sublimation ΔsubH and enthalpy of solvation ΔsolvH) of the solid solute were obtained.  相似文献   

13.
Solubility data of solutes in supercritical fluids (SCF) are crucial for designing extraction processes, such as extraction using SCF or micronization of drug powders. A new empirical equation is proposed to correlate solute solubility in supercritical carbon dioxide (SC CO2) with temperature, pressure and density of pure SC CO2. The proposed equation is ln y2 = J0 + J1P2 + J2T2 + J3 ln ρ where y2 is the mole fraction solubility of the solute in the supercritical phase, J0 − J3 are the model constants calculated by least squares method, P (bar) is the applied pressure, T is temperature (K) and ρ is the density of pure SC CO2. The accuracy of the proposed model and three other empirical equations employing P, T and ρ variables was evaluated using 16 published solubility data sets by calculating the average of absolute relative deviation (AARD). The mean AARD for the proposed model is 7.46 (±4.54) %, which is an acceptable error when compared with the experimental uncertainty. The AARD values for other equations were 11.70 (±23.10), 6.895 (± 3.81) and 6.39 (±6.41). The mean AARD of the new equation is significantly lower than that obtained from Chrastil et al. model and has the same accuracy as compared with Bartle et al. and Mèndez-Santiago–Teja model. The proposed model presents more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry.  相似文献   

14.
Nowadays artificial neural networks(ANNs) with strong ability have been applied widely for prediction of nonlinear phenomenon. In this work an optimized ANN with 7 inputs that consist of temperature, pressure, critical temperature, critical pressure, density, molecular weight and acentric factor has been used for solubility prediction of three disperse dyes in supercritical carbon dioxide(SC-CO2) and ethanol as co-solvent. It was shown how a multi-layer perceptron network can be trained to represent the solubility of disperse dyes in SC-CO2. Numeric Sensitivity Analysis and Garson equation were utilized to find out the degree of effectiveness of different input variables on the efficiency of the proposed model. Results showed that our proposed ANN model has correlation coefficient, Nash–Sutcliffe model efficiency coefficient and discrepancy ratio about 0.998, 0.992, and 1.053 respectively.  相似文献   

15.
The solubility data of two fluorinated and non-steroidal anti-inflammatory drugs, niflumic acid (CAS No. 4394-00-7) and celecoxib (CAS No. 169590-42-5), in supercritical carbon dioxide were measured with a semi-flow type phase equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressures up to 31 MPa. At the highest extraction temperature and pressure, the solubilities are 2.09 × 10−5 and 1.52 × 10−5 in mole fraction for niflumic acid and celecoxib, respectively. The saturated solubility data were correlated with the Chrastil model, the Mendez-Santiago–Teja equation, and the Peng–Robinson equation of state. The Chrastil model fitted the experimental data to about within the experimental uncertainty. The correlated results of the Mendez-Santiago–Teja model confirmed the consistency of the solubility data over the entire experimental conditions. Incorporating with two-parameter van der Waals one-fluid mixing rules, the Peng–Robinson equation of state represents satisfactorily the gas–solid equilibrium behavior of niflumic acid and celecoxib in supercritical carbon dioxide.  相似文献   

16.
Three new CO2-philic open-chain organophosphorous chelating ligands, i.e. ethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG2IPE), triethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG3IPE), and tetraethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG4IPE), were synthesized and characterized. Solubilities of these ligands in scCO2 were determined at different combinations of temperature (313.15⿿333.15 K) and pressure (9⿿20 MPa), which generally showed considerable solubility in each case. These experimental data are in agreement with computed data via a semi-empirical model, in which the average absolute relative deviations lie in the range of 4.09⿿4.95%. The effect of these ligands on supercritical fluid extraction of selected rare earth metals (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Er3+, and Yb3+) was investigated at 313.15 K and 20 MPa. The extraction efficiency of this system was found to increase in the order EG4IPE < EG3IPE < EG2IPE with a range from 55% to 79%. The rationale behind different selectivities toward these metals was also discussed in comparison to other traditional organophosphorous agents. A detailed experimental analysis of the complexation patterns by means of a combination of IR, 1H NMR and ESI-MS has revealed that the interaction of ether oxygen group in EG4IPE with metals and the corresponding extraction mechanism.  相似文献   

17.
Drying of agar gels using supercritical carbon dioxide   总被引:1,自引:0,他引:1  
The use of supercritical carbon dioxide (scCO2) for the removal of water from agar gels has been investigated and compared to air and freeze drying. Experiments were conducted to evaluate how gel formulation (with and without sucrose) and drying conditions (with and without ethanol as a co-solvent, flow rate and depressurisation rate) affected the microstructure of the gels dried using scCO2. X-ray micro-computed tomography (X-ray micro-CT) was used to determine the voidage (% open pore space) of the dried structures, which can be used to indicate the extent of drying-induced structural collapse (in general, the lower the voidage, the greater the collapse). For formulations containing sucrose, which displayed the best structural retention, voidage was found to increase in the order: air drying (4% voidage) < supercritical drying with pure CO2 (48%) < supercritical drying with ethanol-modified CO2 (68%) < freeze drying (76%). The relatively high voidage of samples dried in the presence of ethanol, was due in part to foaming of the gels, hypothesised to result from an interaction between the agar and ethanol, rather than an effect of the supercritical fluid. CO2 flow rate (1 vs. 3 l/min) during supercritical drying and depressurisation rate (0.4 vs. 1.6 MPa/min) had no effect on the dried microstructure.  相似文献   

18.
Zi Wang  Qingzhi Dong  Chun Pu Hu 《Polymer》2006,47(22):7670-7679
A series of fluorinated diblock copolymers, consisting of styrene (St)-acrylonitrile (AN) copolymer [poly(St-co-AN)] and poly-2-[(perfluorononenyl)oxy]ethyl methacrylate, with various compositions as well as with different molecular weights were synthesized by atom transfer radical polymerization and characterized. Dispersion polymerization of acrylonitrile in supercritical carbon dioxide (scCO2) at 30 MPa and at 65 °C with this kind of amphiphilic block copolymer as a stabilizer and 2,2′-azobisisobutyronitrile as an initiator was investigated. The experimental results indicated that, in the presence of a small amount of poly(St-co-AN) (5 wt% to AN), spherical particles of polyacrylonitrile (PAN) were prepared with small diameter and narrow polydispersity (dn = 153 nm, dw/dn = 1.12), resulting from the high stabilizing efficiency of this fluorinated block copolymer. Furthermore, the polymerization of AN in scCO2 under different initial pressures especially under low pressure (<14 MPa) was studied. When the polymerization was carried out around the critical pressure of CO2 (7.7-7.8 MPa), the PANs with high molecular weight (Mν ≈ 130,000-194,000) were synthesized at high monomer conversion (>90%) no matter whether the stabilizer was added, compared to those synthesized by dispersion polymerization at 30 MPa. It was also found that the crystallinity of PAN synthesized at 7.7-7.8 MPa was somewhat higher than that synthesized at 30 MPa, while its crystallite size did not change.  相似文献   

19.
ABSTRACT

Supercritical carbon dioxide (sc-CO2) extraction was carried out on Stereospermum fimbriatum’s stem bark in order to obtain an enriched extract containing the targeted active compound. The recovery of its active compound, C1, was compared with the most active Soxhlet’s extract of dichloromethane. A minimum inhibitory concentration (MIC) assay was done to examine the antibacterial activity of extracts against methicillin-resistant Staphylococcus aureus. The optimum condition for an enriched extract of sc-CO2 to have a maximum recovery of C1 at MIC value of 400 µg/mL was suggested to be operated at 40°C and pressure at 30 MPa, with addition of 6% co-solvent.  相似文献   

20.
张文华 《化工科技》2005,13(6):18-20
采用正交实验法对超临界CO2萃取丁香挥发油的条件进行了研究。考察了萃取温度、压力、CO2流量等因素在不同水平下对丁香挥发油提取率的影响。得到了超临界C02萃取丁香挥发油的最佳实验条件:萃取压力30MPa、温度40℃、CO2流量40kg/h和萃取时间80min,得率为20.62%。与水蒸气蒸馏法比较,超临界CO2萃取的收率高,萃取时间短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号