首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Wet gas flow is a subset of gas-liquid two-phase flow, and the swirlmeter has been used in wet gas flow metering more and more recently. The swirlmeter performance in low pressure wet gas flow was investigated. It is found that the entrained liquid present in a gas stream tends to induce a negative bias in the gas flow rate reading of swirlmeter comparing with equal gas flow rate. When the Lockhart-Martinelli parameter X, which is closely related to the liquid fraction, is bigger than a threshold value, the swirlmeter will not properly work due to the disappearing of vortex precession. It is also found that the liquid-induced gas flow rate reading errors of swirlmeter are dependent on X and the gas densiometric Froude number Frg. A correlation for swirlmeter in low pressure wet gas flow is proposed, and it corrects the liquid-induced gas flow rate errors to an accepted accuracy under the tested conditions. It implies that the swirlmeter with the proposed correlation and the known liquid fraction may be used to meter the gas flow rate in wet gas applications with a relatively low liquid fraction.  相似文献   

2.
A wet gas meter, based on combination of two dissimilar output signals from swirlmeter, i.e. the vortex precession frequency and the differential pressure of swirlmeter, was designed and investigated in low pressure wet gas flow. A wet gas measurement model with the simultaneous equations from the two correlations of swirlmeter has been established, and then the iterative solution algorithm is given. The proposed wet gas meter predicts the gas mass flow rate errors within ±8% from 91.3% tested samples, and the liquid mass flow rate errors within ±20% from 89.2% tested samples, which may be used to meter both gas and liquid flow rates for wet gas flow with X?0.12X?0.12. In view of installation, maintenance and cost, the proposed approach is cost-effective due to using only a flow sensor.  相似文献   

3.
湿气作为一种石油天然气行业经常出现的流体,对于湿气的准确测量具有重要的意义。目前常用的方法是在气液分离之后采用单相仪表进行计量,而这种方法成本较高,因此为实现湿气的气液两相在线不分离测量,设计一种基于类内锥和长喉径类文丘里组合的双节流湿气流量测量装置,提出一种基于三级差压信号的测量方法,引入差压信号的比值作为建模的关键参数。同时建立并比较研究此双节流装置的4套湿气测量模型在实验室和现场的表现。经实验室验证,平均气相测量精度为2.13%,平均液相测量精度6.68%。现场性能测试结果表明未经修正的测量模型平均气相测量误差为7.87%,平均液相误差为15.96%,经二次修正后可实现平均气相测量误差优于±3%,液相测量满度误差优于±10%。  相似文献   

4.
Wet gas metering with a horizontally mounted Venturi meter   总被引:23,自引:0,他引:23  
Wet gas metering is becoming an increasingly important problem to the Oil and Gas Industry. The Venturi meter is a favoured device for the metering of the unprocessed wet natural gas production flows. Wet gas is defined here as a two-phase flow with up to 50% of the mass flowing being in the liquid phase. Metering the gas flowrate in a wet gas flow with use of a Venturi meter requires a correction of the meter reading to account for the liquids effect. Currently, most correlations in existence were created for Orifice Plate Meters and are for general two-phase flow. However, due to no Venturi meter correlation being published before 1997 industry was traditionally forced to use these Orifice Plate Meter correlations when faced with a Venturi metering wet gas flows. This paper lists seven correlations, two recent wet gas Venturi correlations and five older Orifice Plate general two-phase flow correlations and compares their performance with new independent data from the NEL Wet Gas Loop with an ISA Controls Ltd. Standard specification six inch Venturi meter of 0.55 beta ratio installed. Finally, a new correlation is offered.  相似文献   

5.
Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.  相似文献   

6.
A wet gas dual-parameter measuring device composed of a cyclone and a long-throated Venturi tube is proposed to overcome the difficulty of measuring the liquid content of wet gases and reduce the error caused by the wet gas flow pattern. The flow pattern is transformed into an annular flow by a cyclone. In this study, the proposed device was compared with a traditional non-cyclone long-throat Venturi tube; furthermore, the pressure difference ratio W between the contraction and expansion sections of the long-throat Venturi tube was introduced as a parameter. Through numerical simulations, the relationship between W, the gas Froude number, over-reading, and liquid-gas mass flow ratio was analyzed, and a new wet gas flow measurement model was established. The reliability of the measurement model was verified through indoor experiments. The experimental results showed that the traditional wet gas measurement device had gas phase and liquid phase errors of ±4.5% and ±10%, respectively; on the other hand, the cyclone-based wet gas measurement device had gas phase and liquid phase errors of ±3% and ±8%, respectively. Thus, the performance of the wet gas measurement device with the cyclone was higher than that of the traditional wet gas measurement device.  相似文献   

7.
In this paper a novel flow measurement device composed of a long throat Venturi tube and a V-cone was proposed to deal with the wet gas flow measurement without separation, and a new metering method was put forward based on the triple differential pressures. The correlations were based on the gas densiometric Froude number, gas–liquid density ratio, and the differential pressure ratios, which were then compared and validated by the laboratory and field tests. The laboratory test results showed that the uncertainty of relative errors for the gas and liquid flow rates were less than 3% and 6%, respectively. The field test results showed that the uncertainty of relative errors for the gas flow rates before correction varied from 5.53% to 11.57%. After correction the uncertainty of relative errors for gas flow rate varied from 1.37% to 3.22% and full-scale error for liquid flow rate was less than ±10%.  相似文献   

8.
Parameter measurement of gas–liquid two-phase flows with a high gas volume fraction (GVF) has received great attention in the research field of multiphase flow. The cone meter, as a new proposed differential pressure (DP) meter, is increasingly being applied in flowrate measurement of gas–liquid two-phase flow. A dual-parameter measurement method of gas–liquid two-phase flow based on a dual-cone meter is proposed. The two-phase flow is investigated in a horizontal pipeline with high GVF and low pressure, and exists in the form of annular flow. By adding a second cone meter, both gas mass fraction (GMF) and mass flowrate are measured. The pressure drop performances of five different sized cones have been discussed to make a cooperating cone selection and efficiently position the dual-cone in the pipe. Dual-cone flowmeter experiments of 0.45 and 0.65 equivalent diameter ratio combination, and 0.65 and 0.85 equivalent diameter ratio combination are respectively carried out to analyze the linearity of two-phase flow multiplier with Lockhart–Martinelli parameter and obtain the dual-parameter measurement results. The relative experiment error of GMF, gas mass flowrate and total mass flowrate are respectively within ±7%, ±5% and ±10%. The relative error of the liquid phase is within ±10% when the liquid mass fraction is beyond 40%. The experimental results show that it is efficient to utilize this dual-cone method for high GVF and low pressure gas–liquid two-phase flow measurement.  相似文献   

9.
基于单V锥节流装置的湿气气液流量在线测量   总被引:1,自引:0,他引:1  
提出采用两相质量流量系数对V锥节流装置湿气测量误差进行修正,试验研究洛克哈特-马蒂内利参数、气体密度弗鲁德数以及气液密度比对V锥节流装置两相质量流量系数的影响规律。V锥节流装置的节流比为0.55,试验介质为压缩空气和水,气液密度比为0.002 445~0.006 083,气体密度弗鲁德数为0.3~2.0,洛克哈特-马蒂内利参数为0.01~0.34。结果表明,两相流量系数随洛克哈特-马蒂内利参数增加而线性增大,同时还受气体密度弗鲁德数和气液密度比的影响。获得了两相质量流量系数与洛克哈特-马蒂内利参数、气体密度弗鲁德数和气液密度比的定量关系,建立湿气流量测量的半经验关联式。利用V锥节流装置前后锥体对湿气具有不同的差压响应特性,获得了其差异性的影响规律,建立单节流元件双差压的湿气气液流量双参数测量方程。在试验范围内,测得的气相质量流量相对误差小于±5.0%,平均误差为2.2%;液相质量流量相对误差小于±20.0%,平均误差为9.8%。该方法具有系统简单、成本低廉、精度较高的特点。  相似文献   

10.
To gain a deeper understanding of the performance of V-Cone meter in low pressure wet gas measurement, the over-reading of the V-Cone meter was experimentally investigated in the present study. The equivalent diameter ratio of the V-Cone meter is 0.55. The experimental fluids were air and tap water. The operating pressure and the gas volume fraction ranged from 0.1 MPa to 0.4 MPa and 97.52%–100%, respectively. The results showed that the existing V-Cone wet gas correlation, which was developed for the medium and high pressure wet gas cannot be well extended to the low pressure conditions. The Chisholm exponent monotonically decreased with the ratio of liquid-to-gas mass flow rate increasing, and was almost not affected by the gas to liquid density ratio and the gas densiometric Froude number in the present test ranges. A measurement correlation dedicated for the low pressure wet gas was developed. In the present cases, the relative deviation of the gas mass flow rate predicted by the new correlation was within ±4.0% and ±3.0% under the 95% and 90% confidence level, respectively; the average relative deviation was 0.046%. Our results provide insights into the measurement performance of V-Cone meter in low pressure wet gas and may help to develop a more comprehensive wet gas correlation.  相似文献   

11.
The online continuous measurement of multiphase flow is one of the most key technologies which influences the development of oil industry in future. A new type of multiphase meter system is developed based on the open channel flow. The test pipe of the meter is slightly slopped to make the flow pattern mainly stratified flow. Based on the study of oil and gas flow dynamics in the open channel test pipe, the liquid metering model and gas metering model are deduced to calculate the gas and the liquid flow rate, the water cut is measured online by the principle of differential pressure. This device can work online without the separation of the production fluid. By the lab test and field application test, the results of the metering system show that the liquid flow rate errors are within ±5%, the gas flow rate errors can be within ±5%, and the water cut absolute error is within ±2%, which can meet the demands of the field flow rate measurement.  相似文献   

12.
Wet gas metering is becoming an increasingly important problem to many industries, in particular the oil and gas industry. Extensive studies have been done in the past on Venturi and standard orifice differential pressure (DP) flow meters to tackle wet gas flow problems. However in recent years, the slotted orifice flow meter has been developed in the attempt to improve the performance of the standard orifice meter. The novel flow meter is shown to be insensitive to the upstream flow profile with lower head loss and faster pressure recovery. This paper describes the numerical studies to establish the effect of different geometrical perforations on the performance of the slotted orifice. Three sets of slotted orifices with varying aspect ratios (1.5≤l/w≤3.0), of rectangular perforations and one slotted orifice with a circular perforation and a β ratio of 0.40 are simulated in a 1.6 m horizontal pipe using the k-ε turbulence model over a range of parameters, i.e. gas volume fraction (GVF) and gas mass flow rate. The commercial CFD code, FLUENT 6.3 was used to model the wet gas flow. Simulation results revealed that the shape of the perforation has no effect on the differential pressure, However, a marginally better pressure recovery was observed with rectangular perforations of l/w=3.0. The relatively higher over-reading values obtained in this work are consistent with the results of Geng et al. (2006) [1] that for a slotted orifice, a low β ratio is more sensitive to the liquid presence in the stream and hence is preferable for wet gas metering. Mass flow prediction by wet gas correlations showed that the homogeneous model, Steven’s and De Leeuw’s correlations had the best performance, with a calculated mean error of 4%-5%.  相似文献   

13.
The online measurement of wet gas with extremely-low liquid loading (Lockhart-Martinelli parameter lower than 0.02) remains a challenge. In this study, three types of throttle devices, Venturi, orifice plate and cone, are compared experimentally with air-water two-phase flow in a horizontal pipe of inner diameter of 50 mm. High-precision correlations are established to measure the gas and liquid flowrates via a single throttle device. Results show that the two-phase mass flow coefficient (K) of the three throttle devices all increase linearly with the liquid densiometric Froude number and the K correlations are established respectively to correct the gas mass flowrate deviation. The pressure loss ratio (δ) for Venturi is sensitive and monotonous to the liquid loading, which contributes to the high accuracy of liquid flowrate measurement. By incorporating the K correlations, both the gas and liquid mass flowrates can be predicted precisely. The relative error of the gas mass flowrate predicted by the Venturi is within ±2.0% at 95% confidence level, and that of the liquid mass flowrate is within ±15% at 90% confidence level.  相似文献   

14.
Wet gas metering is a subset of multiphase flow metering. A slotted orifice is selected for the development of a wet gas meter (WGM). With the help of Computational Fluid Dynamics (CFD) technology, the static pressure, velocity and density contours across the slotted and the standard orifice flow meter have been analyzed. Based on the experimental data the two-phase multipliers of the slotted orifice have been investigated. Two new differential pressure correlations of the slotted orifice are put forward for the first time and appropriate conclusions are discussed.  相似文献   

15.
To develop a reliable wet gas flowrate measurement model, the relationships between pressure drop characteristics and entrainment downstream of the cone are investigated experimentally. The equivalent diameter ratio of the cone is 0.45. The experimental fluids are air and tap water with XLM in the range of 0–0.3. The two-phase mass flow coefficient and pressure loss ratio are employed to establish the measurement model. The piecewise characteristics of pressure loss ratio are disclosed innovatively, which is explained by the different intensity of entrainment downstream of cone caused by gas-liquid jetting. A simplified method for evaluating the degree of entrainment is proposed to facilitate the establishment of the modified measurement model. Under the present experimental conditions, the relative error of liquid fluctuates within ±20% when XLM is larger than 0.02, and the relative error of gas flowrate is within ±5%. Compared with the model without piecewise consideration, the relative error of the liquid flowrate of the modified model reduces obviously under low wetness conditions (0.02<XLM<0.1). The modified measurement model provides a reliable and cost-effective technology for wet gas flowrate measurement.  相似文献   

16.
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL, METAS and CESAME EXADEBIT.A wide range of conditions were tested overall, with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar, in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested, pressure did not have a noticeable influence on meter performance.When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges, errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.The influence of temperature on meter performance was also studied, with testing under both stable and transient conditions and temperatures as low as −40 °C.When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas, temperature effects were limited. The magnitude and spread of errors increased, but errors within ±2% were achievable at moderate to high flow rates. Conversely, errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions, errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.  相似文献   

17.
The most common method to predict the gas and liquid flow rates in a wet gas flow simultaneously is to use dual pressure drops (dual-DPs) from two or even one single DP meter. In this paper, the metering mechanism of applying dual-DPs were overviewed. To fully understand the response of DP meters to wet gas flows, the pressure drops of wet gas flow with ultra-low liquid loading through three typical DP meters were experimentally investigated, including an orifice plate meter, a cone meter and a Venturi meter. The equivalent diameter ratio is 0.45. The experimental fluids are air and tap water. The pressure is in the range of 0.1–0.3 MPa and the Lockhart-Martinelli parameter (XLM) is less than approximately 0.02. The results show that the upstream-throat pressure drop, the downstream-throat pressure drop and the permanent pressure loss of individual DP meters have unique response to liquid loading. The upstream-throat pressure drop of the orifice plate meter decreases at first and then increases as the liquid loading increases, while that of the cone meter and the Venturi meter increase monotonically. The non-monotonicity of the pressure drop for the orifice plate meter can be attributed to the flow modulation of trace liquid. The downstream-throat pressure drops of all the three test sections decrease at first and then increase. The reason is that the liquid presence in a gas flow increases the downstream friction and vortex dissipation. The permanent pressure loss of the orifice plate meter also shows non-monotonicity. To avoid non-monotonicity, the pressure loss ratio is introduced, which is defined as the ratio of the permanent pressure loss to the upstream-throat pressure drop. Results show that the pressure loss ratio of the Venturi meter has the highest sensitivity to the liquid loading.  相似文献   

18.
Orifice plate meters are often used to measure wet gas flows. Research into the wet gas response of the horizontally installed orifice plate meter is discussed in this paper. Consideration is given to the significant influence of the wet gas flow pattern, as this has previously been found to be relevant to the wet gas response of other differential pressure type flow meters. A wet gas flow correlation for 2″ to 4″ orifice plate meters has been developed from multiple data sets from four wet gas flow test facilities. This corrects the liquid induced gas flow rate error for a known liquid flow rate to ±2% at a 95% confidence level.  相似文献   

19.
The production of natural-gas wells contains natural gas and a small amount of liquid, which is a wet gas composed of oil, gas and water. For dynamically monitor the liquid and gas production from a single well, there is an urgent need for a low-cost, small-volume online metering device for wet gas flows through a single well. Aiming at the problem, this paper designs a wet gas flow measurement device for a long-throated Venturi tube based on the double differential pressure method. By combining experiments and numerical simulations, a matching flow calculation model was developed. Based on the experimental data of NEL's 6-inch standard Venturi tube wet gas over-reading, the numerical simulation method is used to carry out the research of high-pressure wet gas measurement under the pressure condition of 2, 4 and 6 MPa. The simulation results of two multiphase flow models, DPM and Euler, are compared with the experimental values of NEL. The results show that the maximum relative error is less than 10%, and the Euler model is more suitable for the numerical simulation of high-pressure wet gas. According to the actual production from the gas well, a long-throated Venturi tube with a throttling ratio of 0.5 and a diameter of DN50 was designed, and a numerical simulation study of wet gas under a pressure of 2, 3 and 4 MPa was carried out. Numerical simulation results show that the change laws of over-reading and liquid-gas mass ratios of high-pressure wet gas are consistent with those of low-pressure wet gas. The numerical simulation results are used to correct the flow calculation model of low-pressure wet gas, and a flow calculation model suitable for high-pressure wet gas in gas wells is obtained. The gas flow prediction accuracy of the flow calculation model was lower than ±3%, and the liquid flow prediction value was lower than ±10%. Compared with other measurement methods without separation of wet gas, the long-throated Venturi tube based on the double differential pressure method has a simple structure and low measurement cost. By further optimizing and expanding the measurement model, after improving the accuracy, it can be installed in the wellhead pipeline to monitor the oil and gas production from a single well in real time. This can provide support for gas reservoir exploitation decisions.  相似文献   

20.
The application of wet gas flow meter at shale gas wellhead is of great significance to reduce the investment and operation cost of shale gas extraction. In this paper, the flow conditions at the wellhead of shale gas and the principles of the current wet gas flow meters are briefly analyzed. A wet gas flow meter was tested on the wet gas flow test facility, and its performance of flow rates evaluation is studied, which is helpful to optimize the wet gas metering process design of shale gas wellhead and to improve the wet gas metering technology. This study shows that the measurement principles of the current wet gas flow meters are feasible, however, the calibration by using the wet natural gas at working conditions can help to enhance the meter's measure performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号