首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is an effective way to adapt the microstructure, phase transformation and consequently the mechanical properties of NiTi shape memory alloys. In the present study, Ni52Ti47.7Re0.3 shape memory alloy was solution treated at 1000 °C for 24 h then aged at various temperatures of 300, 400, 500 and 600 °C for 3 h. The influence of aging treatment on microstructure, martensitic transformation and mechanical properties of Ni52Ti47.7Re0.3 was investigated. The microstructure of the solution treated alloy was martensite as a matrix phase and precipitates of Ti2Ni phase. The aged alloys had a microstructure as same as that of solution treated alloy in addition to the existence of other types of precipitates like Ni4Ti3 and Ni3Ti. The martensitic — austenitic transformation during heating and cooling was going through one stage of transformation. The martensitic phase transformation temperature increased by the increase of aging temperature but still lower than that of solution treated alloy.  相似文献   

2.
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 °C for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage.  相似文献   

3.
In present work, microstructure, martensitic transformation and mechanical properties of Ti44Ni47−xNb9Bx (x = 0, 0.5, 1, 5 at.%) alloys were investigated as a function of B content. The results show that the addition of B significantly influences the microstructure of the alloys. The microstructure of Ti44Ni47Nb9 alloy consists of B2 parent phase matrix and β-Nb phase. When the B content is 0.5 at.%, Nb3B2 phase presents. With further increasing B content to above 1 at.%, TiB and NbB phases present instead of Nb3B2 phase. With increasing B content, the transformation temperatures increase due to the reduced Ni/Ti ratio and Nb content in the matrix. The mechanical properties can be optimized by the addition of 1 at.% B.  相似文献   

4.
Shape memory properties of a Ni50.3Ti29.7Hf20 (at.%) polycrystalline alloy were characterized after selected heat treatments. The effects of heat treatment temperature and time on the transformation temperatures (TTs) and temperature hysteresis were determined by differential scanning calorimetry. Thermal cycling under constant compressive stress was carried out to reveal the changes in transformation strain, temperature hysteresis, and TT as a function of stress. Isothermal stress cycling experiments were conducted to reveal the critical stresses, transformation strain, and stress hysteresis as a function of temperature. The crystal structure and lattice parameters of the transforming phases were determined by X-ray diffraction at selected temperatures. Precipitate characteristics and martensite morphology were revealed by transmission electron microscopy. Precipitation was found to alter the martensite morphology and significantly improve the shape memory properties of the Ni-rich NiTiHf alloy. For the peak aged condition shape memory strains of up to 3.6%, the lowest hysteresis, and a fully reversible superelastic response were observed at temperatures up to 240 °C. In general, the nickel-rich NiTiHf polycrystalline alloy exhibited a higher work output (≈16.5 J cm?3) than other NiTi-based high temperature alloys.  相似文献   

5.
Martensite in TiNi-based alloys is reported to be thermally stabilized after a moderate deformation. Hence, this paper investigates the effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of (Ni47Ti44)100−xNbx (x=3, 9, 15, 20, 30 at.%) alloys. The stress-induced martensite appears to be stabilized in relation to the thermal-induced martensite that forms on cooling. This observation is confirmed by an increase in the reverse transformation start temperature, during which time the transformation temperature hysteresis reaches about 200°C. Moreover, the Nb content in Ni−Ti−Nb alloy has a great influence on the transformation temperature hysteresis of stress-induced martensite as well as on the process of stress-induced martensitic transformation. The mechanism of wide transformation temperature hysteresis is explained in terms of the microscopic structure of (Ni47Ti44)100−xNbx alloys. Furthermore, the temperature interval of the reverse transformation of stress-induced martensite was found to increase slightly as the strain of the high Nb-content alloy increased, though the value was much smaller than that of the thermally induced martensite. Finally, the paper explains the relation between this unique phenomenon and the elastic strain energy.  相似文献   

6.
The precipitation of the P-phase in Ni–Ti–Pd and Ni–Ti–Pt shape memory alloys has been shown to dramatically increase the martensitic transformation temperature and strength in Ni-rich ternary alloys, yet little is known about the phase's compositional stability. Therefore, the compositional limits of the P-phase have been systematically studied by varying the Pd and Ni content while maintaining the general P-phase Ti11(Ni + Pd)13 stoichiometry. Each alloy was solutionized at 1050 °C followed by water quenching, and aging at 400 °C for 100 h. Four distinct phases were identified by electron and x-ray diffraction: Ti2Pd3, B2 NiTi, P- and P1-phases. The latter precipitate phases became more stable with increasing Ni at the expense of the Pd content. Atom probe tomography revealed the P-phase composition to be 45.8Ti–29.2Ni–25Pd (at.%) or Ti11(Ni7Pd6) as compared to the P1-phase 44.7Ti– 45.8Ni–9.4Pd (at.%) or Ti5Ni5Pd.  相似文献   

7.
In this study, effect of aging treatment on microstructure, deformation behavior, and superelasticity of Ti48.8Ni50.8V0.4 alloy was investigated. After aging at 400?°C for 30?min, Ti3Ni4 precipitates formed. With increasing aging temperature from 300 to 450?°C, the yield strength of reoriented martensite increased due to the strengthening effect of Ti3Ni4 phase, thus improved the shape recovery ratio and reduced the stress hysteresis. Further increasing the aging temperature, the size of Ti3Ni4 precipitates increased and the coherency between precipitate and matrix gradually lost, leading to the decreasing yield strength of reoriented martensite and shape recovery ratio. Simultaneously, the stress hysteresis increased resulting from the hinder of plastic deformation to the interfacial movement during phase transformation. The critical stress to induce martensitic transformation continuously decreased with increasing aging temperature.  相似文献   

8.
采用真空熔炼法向NiTi二元合金中掺杂Pr稀土元素,制备了多组分原子分数的Ni50Ti50-xPrxx=0,0.1,0.3,0.5,0.7,0.9)合金。研究了Pr元素的添加对NiTi合金金相组织、相变温度和硬度的影响。结果表明,Ni50Ti50-xPrx合金由NiTi基体与NiPr夹杂相组成,其中Ni50Ti49.5Pr0.5合金的马氏体相变温度达73 ℃,合金的热滞窄至37 ℃,维氏硬度约为2850 MPa。Pr元素的添加显著降低了NiTi合金的马氏体相变温度,同时,与其他NiTi基合金相比,NiTiPr合金保持了较窄的热滞和较高的硬度。  相似文献   

9.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   

10.
In NiTi shape memory alloys, both the annihilation of dislocations and the formation of Ni4Ti3 precipitates may occur during post-deformation annealing. Different responses of the R-phase transformation temperatures to the annealing conditions have been reported. In order to find out the main factor(s) affecting the R-phase transformation temperatures during post-deformation annealing, a Ti-49.8 at% Ni and a Ti-50.8 at% Ni alloy were subjected to various post-deformation annealing and thermal cycling treatments. The results show that the R-phase transformation temperatures are very stable in the Ti-49.8 at% Ni alloy, while a significant variation is observed in the Ti-50.8 at% Ni alloy with respect to the annealing and thermal cycling conditions. These findings suggest that the R-phase transformation temperatures are not susceptible to the change of dislocation density and depends mainly on the Ni concentration of the matrix, which can be modified by the formation of Ni4Ti3 precipitates.  相似文献   

11.
通过X射线衍射分析(XRD)、透射电子显微观察(TEM)、差式扫描量热分析(DSC)与拉伸实验研究时效处理对Ti48.4Ni51.1Cr0.5合金显微组织、马氏体相变与超弹性的影响规律与机制。经400°C时效处理30 min后,合金中形成Ti3Ni4析出相。当时效温度介于400°C和500°C之间时,合金表现出两步马氏体相变。经时效处理的Ti48.4Ni51.1Cr0.5合金在室温下表现出优异的超弹性。随时效温度自300°C升高到450°C,超弹性恢复率增加。继续升高时效温度,恢复率下降。超弹性应力滞后表现出相反的变化趋势。通过分析Ti3Ni4析出相随时效处理的演化规律解释了时效处理与马氏体相变和超弹性之间的关系。  相似文献   

12.
Ti49.5Ni50.5 shape memory alloy fibers were prepared by a melt overflow process. The martensitic transformation starting temperature of B2 → B19′ in the rapidly solidified fibers was 19 °C. Cylindrical billets of Ni-rich Ti–Ni alloy with 75% porosity were produced by a vacuum sintering technology using as-cast alloy fibers. The mechanical properties and shape memory properties of the highly porous Ti–Ni alloy is investigated using a compressive test. The plateau of the stress–strain curve was observed at about 7 MPa and resulted in 8% elongation associated with stress-induced B2 → B19′ transformation. Because of the high porosity of this specimen, the elastic modulus of about 0.95 GPa could be obtained. It was also found that a recovered strain was 5.9% on heating after the compressive deformation. This recovery of the length is ascribed to the shape memory effect which occurs during the martensitic transformation.  相似文献   

13.
The effects of thermomechanical treatment on the microstructure and high-temperature shape-memory characteristics of a TiNiPdCu alloy were investigated. An unexpected precipitation behavior was identified in a Ti50Ni15Pd25Cu10 alloy. Very high densities of nanoscale precipitates of TiPdCu and Ti2Pd types were found to be formed in the thermomechanically treated Ti50Ni15Pd25Cu10 alloy. A spinodal type of decomposition process was expected to be the cause of the observed precipitation behavior. It was noticed that the preferential diffusion of Cu atoms towards the heterogeneous nucleation sites promoted the precipitation of TiPdCu-type precipitates, which in turn promoted the precipitation of fine Ti2Pd-type precipitates. These precipitates greatly increased the resistance against the transformation-induced plasticity and creep deformation, especially at high stresses and high temperatures, mainly because of the high-temperature stability of these precipitates. High densities of these nanoscaled precipitates caused an anomalous increase in hardness and retarded the martensitic transformation. It was expected that the current research results could be highly beneficial for the development of high-temperature shape-memory alloys stable at temperatures >773 K, while keeping the benefits of ease of fabrication.  相似文献   

14.
Most previous researches focused on small casting ingots prepared by arc melting, when studying high-entropy alloys. Large sized ingots were also necessary in exploring the existence of volume effects in the multi-principal element alloys. During the experiments, a large sized CoCrFeNiTi0.5 alloy casting ingot was prepared by a medium frequency induction melting furnace. A slight volume effect occurred, reflecting mainly in the growth of crystalline grains and the increase of alloy hardness in the ingot. To investigate the effect of annealing temperature on microstructure and properties of CoCrFeNiTi0.5 alloy, several samples taken from the ingot were annealed at 600 °C, 700 °C, 800 °C and 1000 °C respectively for 6 h. Almost no effects were found to the crystalline structure and elemental distribution when the samples were annealed below 1000 °C. The crystalline structure of CoCrFeNiTi0.5 alloy was composed of one principal face-centered cubic (FCC) solid-solution matrix and a few intermetallic phases in the form of interdentrite. Dendrite contained approximately equivalent amount of Co, Cr, Fe, Ni and a smaller amount of Ti. When annealed below 1000 °C, the interdendrite stayed in (Ni, Ti)-rich phase, (Fe, Cr)-rich phase and (Co, Ti)-rich phase. After 1000 °C annealing, (Co, Ti)-rich phase disappeared, while (Ni, Ti)-rich phase and (Fe, Cr)-rich phase grew. The microhardness of the as-cast CoCrFeNiTi0.5 alloy was 616.80 HV and the macrohardness was 52 HRC. The hardness of the samples stayed generally unchanged after annealing. This indicated a high microstructure stability and excellent resistance to temper softening that the CoCrFeNiTi0.5 alloy exhibited.  相似文献   

15.
The combined effects of work hardening and precipitation strengthening were employed to improve the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys. Annealing after cold deformation resulted in the formation of nano-scale TiPdCu and Ti2Pd precipitates, stable at high temperatures in Ti50Ni25?xPd25Cux alloys. The nano-scale precipitates were also observed to retard recovery/recrystallization processes at higher temperatures. It was found that the combined effects of work hardening and precipitation strengthening remarkably enhanced the high-temperature stability of the Ti50Ni20Pd25Cu5 alloy and increased its maximum working temperature range while keeping the transformation temperatures and recovery strains at sufficiently high levels. Precipitation strengthening helped to greatly improve the high-temperature cyclic stability of the alloy. Creep tests at 673 K under 500 MPa confirmed that the better high-temperature cyclic stability of the precipitate-containing alloy was mainly due to its higher creep resistance.  相似文献   

16.
Multiple-stage transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated as a function of pass number and aging treatment before ECAP. When the pass number is no more than four passes, three stage transformation, namely A→R, R1→M1 and R2→M2, occurs in the as-ECAP processed alloy initially aged at 450 °C for 60 min. Only the A→R→M forward transformation occurs provided that the aging duration was decreased/increased to 10/600min. The transformation sequence was discussed based on the microstructure evolution of as-ECAP processed alloy with different initial microstructure and pass number.  相似文献   

17.
The effects of trace Sc, Zr, and Ti on the microstructure and hardness of Al alloys with high Mg content (Al-6Mg, Al-8Mg, and Al-10Mg) were studied by optical microscope, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brinell hardness. The grain size of the as-cast alloys was refined by the addition of Sc and Zr, and it was further refined by the addition of Ti. With the same contents of Sc, Zr, and Ti, an increase in Mg content was beneficial to the refinement due to the solution of Mg into α-Al. The refined microstructures of the as-cast alloys were favorable for Brinell hardness. Addition of Sc, Zr, and Ti to the Al-10Mg alloy results in the improvement of peak hardness and it is about 45% higher than that of the Al-10Mg alloy, which is due to fine precipitations of Al3(Sc1−x Zr x ), Al3(Sc1−x Ti x ), and Al3(Sc1−xy Zr x Ti y ).  相似文献   

18.
Arc-melting (AC) and directional solidification (DS) techniques were used to prepare Nb-15Si-22Ti-2Al-2Hf-2V-(2, 14) Cr alloys (hereafter referred as to 2Cr and 14Cr alloys, respectively), and the microstructural evolution and mechanical properties, including Vickers hardness, room temperature fracture toughness and high temperature strength, of the two AC and DS alloys were compared. The results showed that with heat-treatment at 1350 °C for 50 h, the AC-2Cr alloy composed of Nb solid solution (NbSS) and α-Nb5Si3 silicide, while Laves C15-Cr2Nb phase arose in the 14Cr alloy. With two-phase NbSS/α-Nb5Si3 microstructure, the AC-2Cr alloy showed excellent room-temperature fracture toughness (KQ: 14.2 MPa m1/2) and 0.2% yield strength at 1250 °C (σ0.2: 315 MPa) and 1350 °C (σ0.2: 294 MPa), better than the AC-14Cr alloy with tri-phase NbSS/α-Nb5Si3/C15-Cr2Nb microstructure (KQ: 9.4 MPa m1/2, σ0.2: 189 MPa at 1250 °C and 87 MPa at 1350 °C). The DS technique was found not to change the phase constituent of each alloy, but it made the microstructure slightly orient to the growth direction, resulting in a significant improvement in room-temperature fracture toughness (by ∼43%) and high-temperature yield strength σ0.2 (by ∼55%), as compared with the AC samples.  相似文献   

19.
Three different NiTi-based alloys, whose nominal compositions were Ni50Ti50, Ni49Ti49Fe2, Ni45Ti51.8Fe3.2 (mole fraction, %), respectively, were used in the current research to understand the influence of Fe addition on phase transformation behavior in NiTi shape memory alloy (SMA). The microstructure and phase transformation behavior of the alloys were investigated by optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis. The results show that the matrix of the Ni50Ti50 alloy consists of both B19′ (martensite) phase and B2 (austenite) phase. Moreover, the substructures of twins could be observed in the B19′ phase. However, the ternary alloys of NiTiFe exhibit B2 phase in the microstructures. Such microstructures were also characterized by large presence of Ti2Ni precipitates dispersed homogenously in the matrix of the two kinds of alloys. The addition of Fe to the NiTi SMA results in the decrease in phase transformation temperatures in the ternary alloys. Based on mechanism analysis, it can be concluded that this phenomenon is primarily attributed to atom relaxation of the distorted lattice induced by Ni-antisite defects and Fe substitutions during phase transformation, which enables stabilization of B2 phase during phase transformation.  相似文献   

20.
Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied. Several specimens were produced by copper boat vacuum induction melting. The homogenized specimens were hot rolled and annealed at 900 °C. Thereafter, annealed specimens were subjected to cold rolling with different thickness reductions up to 70%. Transmission electron microscopy revealed that the severe cold rolling led to the formation of a mixed microstructure consisting of nanocrystalline and amorphous phases in Ni50Ti50 alloy. After annealing at 400 °C for 1 h, the amorphous phase formed in the cold-rolled specimens was crystallized and a nanocrystalline structure formed. Results showed that with increasing thickness reduction during cold rolling, the recoverable strain of Ni50Ti50 alloy was increased during superelastic experiments such that the 70% cold rolled–annealed specimen exhibited about 12% of recoverable strain. Moreover, with increasing thickness reduction, the critical stress for stress-induced martensitic transformation was increased. It is noteworthy that in the 70% cold rolled–annealed specimen, the damping capacity was measured to be 28 J/cm3 that is significantly higher than that of commercial NiTi alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号