首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
Scintillation properties of Tm-doped Lu3Al5O12 single crystals   总被引:1,自引:0,他引:1  
Using the micro-pulling-down (μ-PD) method, Tm-doped Lu3Al5O12 (Tm:LuAG) single crystals were grown to examine their scintillation properties. In transmittance spectra, they exhibited about 80% transparency in the wavelengths longer than 320 nm and five absorption lines due to Tm3+ 4f–4f transitions were observed. 241Am α-ray excited radioluminescence spectra were measured and intense 4f–4f emission peaks were observed with the host emission. When excited by 137Cs γ-Ray to obtain pulse height spectra, Tm 1% doped LuAG showed the highest light yield coupled with a photomultiplier (PMT) or a silicon avalanche photodiode (Si-APD). The light yield was estimated to be 5800 and 7300 photons/MeV for PMT and Si-APD, respectively. Decay time profiles consist of two exponential components and the fast and slow components are considered to be attributed to the host and the combination of the host and Tm3+ 4f–4f emission, respectively.  相似文献   

2.
Emission and excitation spectra and luminescence decay kinetics were studied for Pr3+-doped Lu3Al5O12 and Y3Al5O12 single crystalline films (SCF) grown by the liquid phase epitaxy method from a PbO-based flux. The influence of lead-induced centers on their scintillation characteristics was clarified. It was found that the influence of single Pb2+-based centers on the characteristics of Pr3+ centers due to the Pb2+ → Pr3+ energy transfer was weak. However, an overlap of the emission spectra of single and dimer lead-induced centers with the emission spectrum of Pr3+ ions, and especially a strong overlap of the 4f–5d1 absorption band of Pr3+ ions with the slow emission of localized excitons in the 290 nm band had a considerable influence on the scintillation characteristics of the Pr3+-doped SCF.  相似文献   

3.
Single crystalline films (SCF) of Lu2SiO5 (LSO) and Lu2SiO5:Ce (LSO:Ce) silicates with thickness of 2.5-15 μm were crystallized by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B2O3 flux. The scintillation and luminescence properties of LSO:Ce SCF were compared with the properties of LSO:Ce single crystal. The peculiarities of luminescence properties of LSO:Ce SCF in comparison with crystal analog can be due to different distribution of Ce3+ over the Lu1 and Lu2 positions of LSO host and are further influenced by Pb2+ flux-originated contamination.  相似文献   

4.
Solid solution crystals of Lu1−xScxBO3:Ce3+ (= 0.2, 0.3, 0.5, 0.7) were grown by Czochralski method. These crystals have high optical transmittance within wavelength concerned, except for an absorption shoulder in Lu0.8Sc0.2BO3:1at%Ce3+ crystal from 360 to 530 nm. With the increase of Sc/Lu ratio, the excitation and emission spectra have redshift due to change of Ce3+ crystalline environment and the lifetime gradually increases due to the increase of emission wavelength. Efficient energy transfer from the self-trapped excitons to Ce3+ ions was observed. Lu0.8Sc0.2BO3:1at%Ce3+ crystal, due to high density, short decay time, high scintillation efficiency and non-hygroscopic property, could be a promising scintillator.  相似文献   

5.
The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7–25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.  相似文献   

6.
Er-doped Lu3Al5O12 (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down (μ-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under 241Am α-ray excitation indicated host emission at approximately 350 nm and Er3+ 4f-4f emissions. According to the pulse height spectra recorded under γ-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The γ-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 μs and 6-10 μs).  相似文献   

7.
Several concentration of Yb-doped Lu3Al5O12 (Yb:LuAG) and Lu3Ga5O12 (Yb:LGG) single crystals were grown by the micro-pulling-down method. The crystals were seeded-grown in the 1 1 1 direction and transparent and crack free crystals were obtained. Photoluminescence spectra and decay kinetics of these crystals were studied. Charge transfer luminescence of Yb3+ was observed in both crystals. Mean decay time of about 25 ns at 90 K and strong thermal quenching at room temperature was measured for Yb 5%:LuAG. Radioluminescence intensity was compared to the standard BGO sample.  相似文献   

8.
The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOB2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates.We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180–200 ns range.  相似文献   

9.
Nd 0.1%, 0.5%, 1% and 3% doped Lu3Al5O12 (Nd:LuAG) single crystals were grown in the nitrogen atmosphere by the micro-pulling down (μ-PD) method. The grown crystals had a single-phase confirmed by powder XRD analysis. In absorption spectra, some weak absorption lines due to Nd3+ 4f-4f transitions were observed and their intensity increased with the increase of Nd concentration. When excited by 241Am α-ray, a broad emission peak due to defects in the host lattice at 320 nm and some sharp lines due to Nd3+ 4f-4f transitions at wavelength longer than 400 nm were observed. The decay time profiles of Nd:LuAG under γ-ray excitation were well approximated by two exponential function of 340-760 ns and 3-5 μs for each sample. By pulse height measurement using 137Cs, Nd 0.5%:LuAG showed the highest light yield of 7600 ± 760 photons/MeV.  相似文献   

10.
《Optical Materials》2008,30(12):1647-1652
It is known that the emission color of Ce3+ doped garnets is strongly redshifted at higher Ce3+ concentrations. In this report, we study the cause of this redshift in Lu3Al5O12:Ce3+ (LuAG:Ce) phosphors. These changes in emission color with Ce3+ concentration are mainly attributed to a combination of inhomogenous broadening for Ce3+ in LuAG and energy transfer from high energy Ce3+ ions to low energy Ce3+ ions. Evidence for inhomogenous broadening and energy transfer is given through time resolved measurements. Potential reasons for inhomogenous broadening of Ce3+ in these phosphors are also discussed.  相似文献   

11.
For the purpose of quick screening for charge transfer (CT) transitions of Yb3+ in various hosts, (Lu1−xYbx)3Al5O12 (Yb:LuAG) with x=0.05, 0.15, 0.30 and (Y1−xYbx)AlO3 (Yb:YAP) with x=0.05, 0.10, 0.30 were grown by the micro-pulling-down method. (Y,Yb)VO4 with strong wetting was grown by edge defined film-fed growth method and materials, which require moderate temperature gradient, such as Ca8(La,Yb)2(PO4)6O2 and (Gd,Yb)2SiO5 were grown by Czochralski method. Strong dependence of the CT luminescence decay time and intensity on temperature was observed for Yb-doped LuAG and YAP. Super fast decay with 0.85 ns decay time was observed in Yb(30%) doped YAP at room temperature. Though the emission intensity is weak at room temperature, it exceeds several times that of PbWO4. In addition, CT luminescence of Yb:YAP occurs at longer wavelength than in BaF2, which enables the usage of glass-based photomultiplier for the detection. In addition, higher stopping power will be expected due to the higher density host compared with BaF2.  相似文献   

12.
13.
The results of formation of the high density effective scintillation ceramics consisting of two compounds of the cubic symmetry, LuAG:Ce and Lu2O3 (LuAG:Ce + Lu2O3), are described. Powders of a novel material LuAG:Ce + Lu2O3 were synthesized by co-precipitation method. The introduction of Lu2O3 into LuAG:Ce was shown to increase the density of the ceramics obtained and modify its scintillation properties.  相似文献   

14.
Abstract

This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.  相似文献   

15.
This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.  相似文献   

16.
A comparative analysis of the luminescent properties of YAG and YAG:Ce nanopowders (NP) in comparison with single crystalline film (SCF) and single crystal (SC) analogues was performed under excitation by a pulsed synchrotron and X-ray radiation. It was shown that the natural defects concentration in NP was between the SC with a large (0.18–0.19 at.%) concentration of YAl antisite defects (AD) and SCF of these garnets where YAl AD were completely absent. At the same time, Ce3+ doped YAG NP showed luminescent properties close to those of YAG:Ce SCF.  相似文献   

17.
《Optical Materials》2014,36(12):2444-2448
(Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f–4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d–4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.  相似文献   

18.
Abstract

The metastable garnet lattice of Gd3Al5O12 is stabilized by doping with smaller Lu3+, which then allows an effective incorporation of larger Eu3+ activators. The [(Gd1?xLux)1?yEuy]3Al5O12 (x = 0.1–0.5, y = 0.01–0.09) garnet solid solutions, calcined from their precursors synthesized via carbonate coprecipitation, exhibit strong luminescence at 591 nm (the 5D07F1 magnetic dipole transition of Eu3+) upon UV excitation into the charge transfer band (CTB) at ~239 nm, with CIE chromaticity coordinates of x = 0.620 and y = 0.380 (orange-red). The quenching concentration of Eu3+ was estimated at ~5 at.% (y = 0.05), and the quenching was attributed to exchange interactions. Partial replacement of Gd3+ with Lu3+ up to 50 at.% (x = 0.5) while keeping Eu3+ at the optimal content of 5 at.% does not significantly alter the peak positions of the CTB and 5D07F1 emission bands but slightly weakens both bands owing to the higher electronegativity of Lu3+. The effects of processing temperature (1000–1500 °C) and Lu/Eu contents on the intensity, quantum efficiency, lifetime and asymmetry factor of luminescence were thoroughly investigated. The [(Gd0.7Lu0.3)0.95Eu0.05]3Al5O12 phosphor processed at 1500 °C exhibits a high internal quantum efficiency of ~83.2% under 239 nm excitation, which, in combination with the high theoretical density, favors its use as a new type of photoluminescent and scintillation material.  相似文献   

19.
We investigated basic optical and scintillation properties of pure Y2O3, Tm3+-doped Y2O3, pure Lu2O3 and Nd3+-doped Lu2O3 transparent ceramics made by a sintering method. All ceramic samples showed 60–80% transparency, and some absorption bands due to Nd3+ 4f–4f transition were observed in Nd3+:Lu2O3 ceramic. Both Tm3+:Y2O3 and Nd3+:Lu2O3 ceramics showed sharp luminescence lines corresponding to the 4f–4f transition under 285 nm (Tm3+:Y2O3) and 340 nm (Nd3+:Lu2O3) excitation. The photoluminescence decay times were calculated to be about 24 μs for Tm3+:Y2O3 and 1 μs for Nd3+:Lu2O3, respectively. In radioluminescence measurements, Tm3+ and Nd3+ 4f–4f luminescence were observed for Tm3+-doped Y2O3 and Nd3+-doped Lu2O3 ceramics under 241Am 5.5 MeV α-ray excitation. Finally scintillation light yield was investigated with pulse height analysis.  相似文献   

20.
Shaped single crystals of (Yb0.05LuxGd0.95−x)Ga5O12 (0.0x0.9) and Yb0.15Gd0.15Lu2.7(AlxGa1−x)O12 (0.0x1.0) were grown by the modified micro-pulling-down method. Continuous solid solutions with garnet structure and a linear compositional dependency of crystal lattice parameter in the system Yb:(Gd,Lu)3(Ga,Al)5O12 are formed. Measured optical absorption spectra of the samples show 4f–4f transitions related to Gd3+ ion at 275 and 310 nm, and also an onset of charge transfer transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240 nm. A complete absence of Yb3+ charge transfer luminescence under X-ray excitation in any of the investigated samples was explained by the overlapping of charge transfer absorption of Yb3+ by that of Gd3+ ions. For specific composition of Lu1.5Gd1.5Ga5O12 an intense defect––host lattice-related emission, which achieve of about 40% integrated intensity compared with Bi4Ge3O12, was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号