首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of sweet sorghum as an alternative crop for ethanol production was investigated in this study. Initially, the enzymatic hydrolysis of sorghum grains was optimized, and the hydrolysate produced under optimal conditions was used for ethanol production with an industrial strain of Saccharomyces cerevisiae, resulting in an ethanol concentration of 87 g L−1. From the sugary fraction (sweet sorghum juice), 72 g L−1 ethanol was produced. The sweet sorghum bagasse was submitted to acid pretreatment for hemicellulose removal and hydrolysis, and a flocculant strain of Scheffersomyces stipitis was used to evaluate the fermentability of the hemicellulosic hydrolysate. This process yielded an ethanol concentration of 30 g L−1 at 23 h of fermentation. After acid pretreatment, the remaining solid underwent an alkaline extraction for lignin removal. This partially delignified material, known as partially delignified lignin (PDC), was enriched with nutrients in a solid/liquid ratio of 1 g/3.33 mL and subjected to simultaneous saccharification and fermentation (SSF) process, resulting in an ethanol concentration of 85 g L−1 at 21 h of fermentation. Thus, from the conversion of starchy, sugary and lignocellulosic fractions approximately 160 L ethanol.ton−1 sweet sorghum was obtained. This amount corresponds to 13,600 L ethanol.ha−1.  相似文献   

2.
Sweet sorghum (Sorghum bicolor L. Moench) is a widely adapted sugar crop with high potential for bioenergy and ethanol production. Sweet sorghum can yield more ethanol per unit area of land than many other crops especially under minimum input production. Sweet sorghum is well-adapted to marginal growing conditions such as water deficits, water logging, salinity, alkalinity, and other constraints. Sweet sorghum potential exists for ethanol yield of 6000 L ha−1 with more than three units of energy attained per unit invested. Traditionally, sweet sorghum has served as a syrup crop and its culture and production are well understood. Sweet sorghum is genetically diverse and variations exits for characteristics such as Brix % (13–24), juice sucrose concentration (7.2–15.5%), total stalk sugar yield (as high as 12 Mg ha−1), fresh stalk yield (24–120 Mg ha−1), biomass yield (36–140 t ha−1) and others indicating potential for improvement. Transitioning sweet sorghum to a bioenergy crop is hampered by inadequate technology for large-scale harvest, transport and storage of the large quantities of biomass and juice produced, especially where the harvest window is short. Conversion of sweet sorghum to ethanol can be achieved by fermenting juice expressed from stems or directly fermenting chopped stalks. Integration of the fermentation and distillation of sweet sorghum juice in corn ethanol plants has not yet been achieved.  相似文献   

3.
Sweet sorghum juice was fermented into ethanol using Saccharomyces cerevisiae (ATCC 24858). Factorial experimental design, regression analysis and response surface method were used to analyze the effects of the process parameters including juice solid concentration from 6.5 to 26% (by mass), yeast load from 0.5 g L−1 to 2 g L−1 and fermentation temperature from 30 °C to 40 °C on the ethanol yield, final ethanol concentration and fermentation kinetics. The fermentation temperature, which had no significant effect on the ethanol yield and final ethanol concentration, could be set at 35 °C to achieve the maximum fermentation rate. The yeast load, which had no significant effect on the final ethanol concentration and fermentation rate, could be set at 1 g L−1 to achieve the maximum ethanol yield. The juice solid concentration had significant inverse effects on the ethanol yield and final ethanol concentration but a slight effect on the fermentation rate. The raw juice at a solid concentration of 13% (by mass) could be directly used during fermentation. At the fermentation temperature of 35 °C, yeast solid concentration of 1 g L−1 and juice solid concentration of 13%, the predicted ethanol yield was 101.1% and the predicted final ethanol concentration was 49.48 g L−1 after 72 h fermentation. Under this fermentation condition, the modified Gompertz's equation could be used to predict the fermentation kinetics. The predicted maximum ethanol generation rate was 2.37 g L−1 h−1.  相似文献   

4.
Bio‐hydrogen production from sweet sorghum stalk using mixed anaerobic sludge was reported in this paper. Batch tests were carried out to analyze influences of several environmental factors on yield of H2 from sweet sorghum stalk under constant mesophillic temperature (36±1°C). The experimental results showed that, for the raw stalk, the cumulative hydrogen yield was 52.1 ml g−1·TVS with utilization percentages of sugars, hemi‐cellulose and cellulose in the stalk being 89.12, 15.23 and 13.89% respectively; whereas for the stalk pretreated by 0.4% NaOH solution at room temperature for 24 h, the cumulative hydrogen yield was 127.26 ml g−1·TVS with utilization percentages of sugars, hemi‐cellulose and cellulose being 99.17, 53.64, 41.56%, respectively. The hydrogen content in the biogas was about 53% while the methane content was less than 4% throughout the study. Besides hydrogen and methane, the main metabolic products detected were ethanol, propionate and butyrate. The experimental results suggested that the alkalization pretreatment of the substrate plays a crucial role in the conversion of the sweet sorghum stalk wastes into bio‐hydrogen by the mixed anaerobic sludge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Enhancement of biological H2 production efficiency with pre-ozonation process of palm oil mill effluent (POME) prior to thermophilic dark fermentation (55 °C) was investigated. H2 fermentation experiments were conducted using varying concentrations of raw and ozonated POME. Results revealed that H2 can be produced from both raw and ozonated POME under thermophilic fermentation. Maximum H2 production yield of 77 mL.g−1CODremoved was obtained from ozonated POME, which was higher than that of 51 mL·g−1 CODremoved obtained from raw POME at the highest concentration of 35,000 mg COD.L−1. Meanwhile, the specific H2 production rate (R'max) of 1.9 and 1.5 mL·h−1·g−1 TVS were observed in raw and ozonated POME at the concentration of 25,000 mg COD.L−1, respectively. The main metabolic products during POME fermentation were acetic and butyric acids and trace amount of valeric acid. Propionic acid and ethanol have contributed, which could be reduced H2 production in all batch experiments for both POME. The highest efficiency of total and soluble COD removal of 24 and 25% was obtained from the raw POME, and those of 19 and 25% was obtained from the ozonated POME. The present study demonstrates that the POME loading was greatly influenced on the H2 production yields and rates. The comparative results showed that the ozonated POME gave higher H2 yields than the raw POME. Thus, demonstrating that the ozonation process significantly improved the POME biodegradability, which is able to enhance H2 production yields. However, the ozone pre-treatment was not improved in the specific H2 production rates.  相似文献   

6.
Sugar beet juice can serve as feedstock for ethanol product due to its high content of fermentable sugars and high energy output/input ratio. Batch ethanol fermentation of raw juice and thick juice proved that addition of mineral nutrients could not improve ethanol concentration, but could accelerate the fermentation rate. Fermentation of thick juice with an initial pH of 9.1 did not affect the fermentation process. The continuous ethanol fermentation of raw juice was performed at 35 °C with a dilution rate of 0.3 h−1, resulting in ethanol concentration, ethanol yield and productivity of 70.7 g L−1, 89.8% and 21.2 g L−1 h−1, respectively. A two-stage reactor was used in the continuous ethanol fermentation of thick juice by feeding fresh yeast cells into the second reactor. This process was stable at a total process dilution rate of 0.11 h−1 with an overall sugar concentration of 190 g L−1 in the influent. The ethanol concentration was kept at approximately 80 g L−1, corresponding to ethanol yield of 82.5% and productivity of 8.8 g L−1 h−1.  相似文献   

7.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

8.
This study evaluated the feasibility of H2 and CH4 production in two-stage thermophilic (55 °C) anaerobic digestion of sugarcane stillage (5,000 to 10,000 mg COD.L−1) using an acidogenic anaerobic fluidized bed reactor (AFBR-A) with a hydraulic retention time (HRT) of 4 h and a methanogenic AFBR (AFBR-S) with HRTs of 24 h–10 h. To compare two-stage digestion with single-stage digestion, a third methanogenic reactor (AFBR-M) with a HRT of 24 h was fed with increasing stillage concentrations (5,000 to 10,000 mg COD.L−1). The AFBR-M produced a methane content of 68.4 ± 7.2%, a maximum yield of 0.30 ± 0.04 L CH4.g COD−1, a production rate of 3.78 ± 0.40 L CH4.day−1.L−1 and a COD removal of 73.2 ± 5.0% at an organic loading rate (OLR) of 7.5 kg COD.m−3.day−1. In contrast, the two-stage AFBR-A system produced a hydrogen content of 23.9 ± 5.6%, a production rate of 1.30 ± 0.16 L H2.day−1.L−1 and a yield of 0.34 ± 0.08 mmol H2.g CODap−1. Additionally, the decrease in the HRT from 18 h to 10 h in the AFBR-S favored a higher methane production, improving the maximum methane content (74.5 ± 6.0%), production rate (5.57 ± 0.38 L CH4.day−1.L−1) and yield (0.26 ± 0.06 L CH4.g COD−1) at an OLR of 21.6 kg COD.m−3.day−1 (HRT of 10 h) with a total COD removal of 70.1 ± 7.1%. Under the applied COD of 10,000 mg L−1, the two-stage system showed a 52.8% higher energy yield than the single-stage anaerobic digestion system. These results show that, relative to a single-stage system, two-stage anaerobic digestion systems produce more hydrogen and methane while achieving similar treatment efficiencies.  相似文献   

9.
Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg1 was obtained in a 50 g kg1 sulphuric acid solution in water, with a power input of 43.2 kJ g1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m3 tonne1 or 33 m3 ha1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive.  相似文献   

10.
Sweet sorghum is gaining importance as a raw material for ethanol production. Information on genetics of sugar content in stalk is required to facilitate the breeding of cultivars with high ethanol yield. Generation mean analysis and frequency distribution studies were carried out in crosses 27 B × kellar, and 27 B × BJ 204 for sweet stalk during 2006 and 2007. Kellar (a US sweet sorghum line) and BJ 204 (a Chinese line) are high brix (sweet stalk) lines. The traits studied were: brix, sucrose, stalk, and juice yield and plant height. The mean performance of families showed that the F1 in crosses for high brix and sucrose percentage were tending towards P2 (higher sugar percentage parent) implying these traits to be dominant for higher brix and sucrose content. However, the mean values of F1 for stalk and juice yields and plant height showed over-dominance for the traits. Frequency distribution of F2 showed that brix and sucrose percentage are polygenic traits, and stalk and juice yields are oligogenic traits. Generation mean analysis showed that both additive and dominant gene actions for traits, sucrose and brix in stalk juice were significant. Since the plant traits important for high stalk sugar percentage show dominance and over-dominance inheritance, hybrid breeding will be useful. Selection for pure lines with high brix is to be practised in later generations.  相似文献   

11.
It is the first study to synthesize Co(II)-Schiff Base complex and to use it like a catalyst for potassium borohydride hydrolysis reaction to hydrogen production. Co(II)-complex is synthesized with CoCl2·6H2O and 5-Amino-2,4-dichlorophenol-3,5-di-tert-butylsalisylaldimine ligand. KBH4 hydrolysis reaction is studied according as percentage of KBH4, percentage of KOH, amount of Co-Schiff Base complex catalyst and temperature effects. Co-Schiff Base complex is highly effective catalyst and initial rates (Ro) of KBH4 hydrolysis reaction were 61220.00 and 99746.67 mL H2. g−1 cat. min−1 at 30 °C and 50 °C. Furthermore this study includes the kinetic calculations and for this reaction calculated activation energy is 17.56 kJ mol−1.  相似文献   

12.
Biohydrogen production from palm oil mill effluent by two-stage dark fermentation and microbial electrolysis was investigated under thermophilic condition. The optimum chemical oxygen demand (COD) concentration and pH for dark fermentation were 66 g·L−1 and 6.5 with a hydrogen yield of 73 mL-H2·gCOD−1. The dark fermentation effluent consisted of mainly acetate and butyrate. The optimum voltage for microbial electrolysis was 0.7 V with a hydrogen yield of 163 mL-H2·gCOD−1. The hydrogen yield of continuous two-stage dark fermentation and microbial electrolysis was 236 mL-H2·gCOD−1 with a hydrogen production rate of 7.81 L·L−1·d−1. The hydrogen yield was 3 times increased when compared with dark fermentation alone. Thermoanaerobacterium sp. was dominated in the dark fermentation stage while Geobacter sp. and Desulfovibrio sp. dominated in the microbial electrolysis cell stage. Two-stage dark fermentation and microbial electrolysis under thermophilic condition is a highly promising option to maximize the conversion of palm oil mill effluent into biohydrogen.  相似文献   

13.
Microalga Chlorella protothecoides can grow heterotrophically with glucose as the carbon source and accumulate high proportion of lipids. The microalgal lipids are suitable for biodiesel production. To further increase lipid yield and reduce biodiesel cost, sweet sorghum juice was investigated as an alternative carbon source to glucose in the present study. When the initial reducing sugar concentration was 10 g L−1 in the culture medium, the dry cell yield and lipid content were 5.1 g L−1 and 52.5% using enzymatic hydrolyzates of sweet sorghum juice as the carbon source after 120 h-culture in flasks. The lipid yield was 35.7% higher than that using glucose. When 3.0 g L−1 yeast extract was added to the medium, the dry cell yield and lipid productivity was increased to 1.2 g L−1 day−1 and 586.8 mg L−1 day−1. Biodiesel produced from the lipid of C. protothecoides through acid catalyzed transesterification was analyzed by GC–MS, and the three most abundant components were oleic acid methyl ester, cetane acid methyl ester and linoleic acid methyl ester. The results indicate that sweet sorghum juice could effectively enhance algal lipid production, and its application may reduce the cost of algae-based biodiesel.  相似文献   

14.
The relationship between total soluble sugar content and Brix in stalk juice of sweet sorghum was determined through one-dimensional linear regression. Meanwhile, bioethanol fermentation experiments were conducted in shaking flasks and 10 l fluidized bed bioreactor with stalk juice of Yuantian No. 1 sweet sorghum cultivar when immobilized yeast was applied. The experimental results in the shaking flasks showed that the order of influence on improving ethanol yield was (NH4)2SO4>MgSO4>K2HPO4, and the optimum inorganic salts supplement dose was determined as follows: K2HPO4 0%, (NH4)2SO4 0.2%, MgSO4 0.05%. When the optimum inorganic salts supplement dose was used in fermentation in 10 l fluidized bed reactor, the fermentation time and ethanol content were 5 h and 6.2% (v/v), respectively, and ethanol yield was 91.61%, which was increased by 9.73% than blank. In addition, the results showed that the fermentation time was about 6–8 times shorter in fluidized bed bioreactor with immobilized yeast than that of conventional fermentation technology. As a result, it can be concluded that the determined optimum inorganic salts supplement dose could be used as a guide for commercial ethanol production. The fluidized bed bioreactor with immobilized yeast technology has a great potential for ethanol fermentation of stalk juice of sweet sorghum.  相似文献   

15.
The biohydrogen (H2) production in batch experiments under varying concentrations of raw and ozonated palm oil mill effluent (POME) of 5000–30,000 mg COD.L−1, at initial pH 6, under mesophilic (37 °C), thermophilic (55 °C) and extreme-thermophilic (70 °C) conditions. Effects of ozone pretreatment, substrate concentration and fermentation temperature on H2 production using mesophilic seed sludge was undertaken. The results demonstrated that H2 can be produced from both raw and ozonated POME, and the amounts of H2 production were directly increased as the POME concentrations were increased. H2 was successfully produced under the mesophilic fermentation of ozonated POME, with maximum H2 yield, and specific H2 production rate of 182 mL.g−1 CODremoved (30,000 mg COD.L−1) and 6.2 mL.h−1.g−1 TVS (25,000 mg COD.L−1), respectively. Thus, indicating that the ozone pretreatment could elevate on the biodegradability of major constituents of the POME, which significantly enhanced yields and rates of the H2 production. H2 production was not achieved under the thermophilic and extreme-thermophilic fermentation. In both fermentation temperatures with ozonated POME, the maximum H2 yield was 62 mL.g−1 CODremoved (30,000 mg COD.L−1) and 63 mL.g−1 CODremoved (30,000 mg COD.L−1), respectively. The highest efficiency of total and soluble COD removal was obtained at 44 and 37%, respectively following the mesophilic fermentation, of 24 and 25%, respectively under the thermophilic fermentation, of 32 and 20%, respectively under the extreme-thermophilic fermentation. The production of volatile fatty acids increased with an increased fermentation time and temperature in both raw and ozonated POME under all three fermentation temperatures. The accumulation of volatile fatty acids in the reactor content were mostly acetic and butyric acids. H2 fermentation under the mesophilic condition of 37 °C was the better selection than that of the thermophilic and extreme-thermophilic fermentation.  相似文献   

16.
Air-dried samples of sweet sorghum, sugarcane bagasse, wheat straw, maize leaves and silphium were utilized without chemical pretreatment as sole energy and carbon sources for H2 production by the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus. The specific H2 production rates and yields were determined in the batch fermentation process. The best substrate was wheat straw, with H2 production capacity of 44.7 L H2 (kg dry biomass)?1 and H2 yield of 3.8 mol H2 (mol glucose)?1. Enzymatically pretreated maize leaves exhibited H2 production of 38 L H2 (kg dry biomass)?1. Slightly less H2 was obtained from homogenized whole plants of sweet sorghum. Sweet sorghum juice was an excellent H2 source. Silphium trifoliatum was also fermented though with a moderate production. The results showed that drying is a good storage method and raw plant biomass can be utilized efficiently for thermophilic H2 production. The data were critically compared with recently published observations.  相似文献   

17.
Pretreatment of the empty fruit brunch (EFB) from oil palm was investigated for H2 fermentation. The EFB was hydrolyzed at various temperatures, H2SO4 concentrations, and reaction times. Subsequently, the acid-hydrolysate underwent enzymatic saccharification under various temperature, pH, and enzymatic loading conditions. Response surface methodology derived the optimum sugar concentration (SC), hydrogen production rate (HPR), and hydrogen yield (HY) as 28.30 g L−1, 2601.24 mL H2 L−1d−1, and 275.75 mL H2 g−1 total sugar (TS), respectively, at 120 °C, 60 min of reaction, and 6 vol% H2SO4, with the combined severity factor of 1.75. Enzymatic hydrolysis enhanced the SC, HY, and HPR to 34.52 g L−1, 283.91 mL H2 g−1 TS, and 3266.86 mL H2 L−1d−1, respectively, at 45 °C, pH 5.0, and 1.17 mg enzyme mL−1. Dilute acid hydrolysis would be a viable pretreatment for biohydrogen production from EFB. Subsequent enzymatic hydrolysis can be performed if enhanced HPR is required.  相似文献   

18.
Ozone pretreatment of palm oil mill effluent (POME) was employed to improve sustrate biodegradability prior to biological H2 production. The H2 production was conducted at varing pHs from 4.0 to 6.0 to examine the impact of pH on the H2 mesophilic production (37 °C). The optimal pH for H2 production was 6.0 for both raw and ozonated POME. The POME concentrations were greatly influenced the yields and rates of H2 production. At the optimal pH, the maximum H2 production yield of 182 ± 7.2 mL.g−1 COD (7.96 mmoL.g−1 COD) was achieved at the ozonated POME concentration of 30,000 mg COD.L−1. The maximum H2 production rate (Rmax) of 43.1 ± 2.5 mL.h−1 was obtained at the ozonated POME concentration of 25,000 mg COD.L−1. The highest total COD removal was 44% at of 15,000 mg COD.L−1 ozonated POME. Acetic and butyric acids were dominant products during H2 fermentation and tended to increase with the increased POME concentrations. Ozonation as a pretreatment process showed significant enhancement of the POME biodegradability , and subsequently improved the H2 production H2.  相似文献   

19.
Hydrogen can be generated from cyanobacteria cultivation with light and organic carbon as an energy source. The aim of this study was to investigate the influence of ammonium and glucose concentration, and the culture age on the production of hydrogen and other products, and phosphate and organic carbon removal by Anabaena sp. (UTEX 1448) in batch anaerobic photobioreactors. Our results demonstrated an effect of culture age and ammonium concentration in hydrogen production, an average increase of 4.1 times (90.4 μmol H2 mg Chl a−1 h−1 and 13.2 mmol mg Chl a−1) in the conditions with younger biomass and without ammonium. Culture age also had an effect in phosphate removal, with 92% of removal efficiency, and ethanol production (an average increase of 2.9 times–97 mg L−1), however the optimum conditions were obtained with older biomass. This study demonstrates efficient hydrogen production by this strain of Anabaena sp. fewer researched.  相似文献   

20.
Oxidative steam reforming of ethanol (OESR) was investigated over PtNi/CeO2SiO2 catalysts prepared from different cerium salt precursors. During stability tests performed at 500 °C, steam/ethanol ratio (S/E) of 4 and oxygen/ethanol ratio of 0.5 (O/E), the highest performance was recorded over the catalyst prepared form organic precursors. The most promising formulation was tested at different temperatures, S/E and O/E. Complete conversion was recorded during 100 h of the test at 600 °C, with a very low carbon formation rate (6.9·10−7 gcoke, oxidized·gcatalyst−1·gcarbon,fed−1·h−1). The increase of oxygen content in the reacting mixture from 5 to 7.5% had a beneficial effect on H2 yield, which rose of more than 20% after 100 h of test, and on the conversion of by-products. When steam/ethanol ratio grew from 4 to 6, a slightly lower performance improvement was observed. Therefore, the highest activity and stability during OESR over the PtNi/CeO2SiO2 catalyst prepared from organic salts was achieved at 600 °C, O/E = 0.75 and S/E = 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号