首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystalline films (SCF) of Lu2SiO5 (LSO) and Lu2SiO5:Ce (LSO:Ce) silicates with thickness of 2.5-15 μm were crystallized by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B2O3 flux. The scintillation and luminescence properties of LSO:Ce SCF were compared with the properties of LSO:Ce single crystal. The peculiarities of luminescence properties of LSO:Ce SCF in comparison with crystal analog can be due to different distribution of Ce3+ over the Lu1 and Lu2 positions of LSO host and are further influenced by Pb2+ flux-originated contamination.  相似文献   

2.
Cerium-activated lutetium oxyorthosilicate Lu2SiO5:Ce3+ (LSO:Ce) and coactivated LSO:Ce,Dy and LSO:Ce,Yb crystals have been synthesized by the sol-gel technique. It is shown that the introduction of coactivator (Yb and Dy) ions influences the energy storage in LSO:Ce, thus making it possible to control the afterglow and thermoluminescence in these crystals. The observed effect is related to the electron properties of coactivator ions (donor against acceptor), which determine the recharge of electron traps in LSO crystals.  相似文献   

3.
This work deals with luminescence and scintillation characteristics of highly efficient cerium-doped scintillators, lutetium–yttrium orthosilicate (Lu2(1−x)Y2xSiO5:Ce3+, x = 0−1). The radioluminescence, photoluminescence excitation (PLE) and emission (PL) spectra of the CeLu1, CeLu2 centers in LSO, LYSO and YSO are measured and discussed between 80 and 400 K with respect to the CeLu1 and CeLu2 features assignment and separation. The influence of yttrium concentration in Lu2(1−x)Y2xSiO5:Ce3+ on CeLu1, CeLu2 luminescence characteristics is demonstrated. Temperature dependence shows that with increasing yttrium content the onset of the CeLu1 and CeLu2 decay time decrease and CeLu1, CeLu2 delayed recombination integrals increase shift to higher temperatures. The 5d1 thermally induced excited-state ionization of both CeLu1 and CeLu2 centers is confirmed and studied by purely optical methods.  相似文献   

4.
The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7–25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.  相似文献   

5.
用Czochralsky方法和铱坩埚感应加热技术生长出了尺寸为φ35mm×40mm的掺铈硅酸镥(LSO:Ce)闪烁晶体.透射光谱表明,由于铈离子的掺入,使晶体的吸收边由纯LSO晶体的195nm红移至380nm.LSO:Ce晶体的紫外激发波长按强度递减的顺序依次为380、333、319和216nm,其光发射为带状谱,波长覆盖范围从390nm至560nm.X射线激发的发射谱具有典型的双峰特征,峰值波长为393nm和.426nm.这些特征与Ce3+离子基态能级4f1因自旋-轨道耦合而产生的两个分裂能级和Ce+离子在LSO晶体中占据两个不同的结晶学格位有关.  相似文献   

6.
The Sr2Al2SiO7:Eu2+, Ce3+ phosphors were synthesized by a high temperature solid-state reaction. Effective energy transfer occurs in Ce3+ and Eu2+ co-doped Sr2Al2SiO7 due to large spectral overlap between the emission of Ce3+ and excitation of Eu2+ ions. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+ ions. The critical distance has been estimated to be about 1.83 nm by spectral overlap method. Furthermore, the developed phosphors can generate lights from blue to green region under the excitation of UV radiation by appropriately tuning the activator content. The Sr2Al2SiO7:Eu2+,Ce3+ phosphors are promising phosphors for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

7.
At the High-Throughput Discovery of Scintillator Materials Facility at Lawrence Berkeley National Laboratory, scintillators are synthesized by solid-state reaction or melt mixing, forming crystalline powders. These powders are formed in various granularity and the crystal grain size affects the apparent luminosity of the scintillator. To accurately predict a “full-size” scintillator's crystal luminosity, the crystal luminosity as a function of crystal granularity size has to be known. In this study, we examine Bi4Ge3O12 (BGO), Lu2SiO5:Ce3+ (LSO), YAlO3:Ce3+(YAP:Ce), and CsBa2I5:Eu2+ (CBI) luminosities as a function of crystalline grain size. The highest luminosities were measured for 600- to 1000-μm crystal grain sizes for BGO and LSO, for 310- to 600-μm crystal grain sizes for CBI, and for crystal grains larger than 165 μm for YAP:Ce. Crystal grains that were larger than 1 mm had a lower packing fraction, and smaller grains were affected by internal scattering. We measured a 34% decrease in luminosity for BGO when decreasing from the 600- to 1000-μm crystal grain size range down to the 20- to 36-μm range. The corresponding luminosity decrease for LSO was 44% for the same grain size decrease. YAP:Ce exhibited a luminosity decrease of 47% when the grain size decreased from the 165- to 310-μm crystal grains to the 20- to 36-μm range, and CBI exhibited a luminosity decrease of 98% when the grain size decreased from the 310- to 600-μm crystal grain range to the 36- to 50-μm range. We were able to very accurately estimate full-size crystal luminosities from crystalline grains that are larger than 90 μm.  相似文献   

8.
The role of Si4+ in the valence state of Ce and phase control in YAG:Ce phosphors was investigated upon incorporation of Si–O in the form of SiO2. By varying the amount of SiO2 addition, the valence state of tetravalent and trivalent Ce ions was identified distinctly by X-ray photoelectron spectroscopy and the phase purity of YAG host phase was examined by X-ray diffraction patterns. The self-reduction phenomena from Ce4+ to Ce3+ in YAG:Ce samples was observed to be featured in a typical 5d → 4f yellow-green transition of Ce3+ ion upon firing in air, driven by charge compensation for imbalance substitution of Ce4+ for Y3+. The addition of SiO2 promotes further reduction of Ce4+ to Ce3+ in an amount up to 7.0 wt%, owing to spontaneous charge compensation, and suppresses the formation of YAP (yttrium aluminate perovskite, YAlO3) and YAM (yttrium aluminate monoclinic, Y4Al2O9). The results reveal the role of SiO2 addition in a proper amount to be able to achieve desired luminous center of Ce3+ and phase-pure YAG for a series of YAG hosted luminescence materials such as blue-excitable YAG phosphor or laser-pumped YAG-based transparent ceramics or glass ceramics for lighting and display purposes.  相似文献   

9.
In this study, 1.0 at.% YVO4:Ce3+ single crystals were grown in the protective atmosphere by using the Czochralski method. The crystals were annealed in Ar and H2 atmospheres at different temperatures. The absorption and fluorescence spectra of the samples before and after annealing were measured. Results showed that the luminescent efficiency of the crystals was significantly enhanced after annealing in H2 than after annealing in Ar. This phenomenon can be attributed to the existence of some Ce4+ ions in the crystal lattice. These Ce4+ ions can be effectively reduced to Ce3+ via annealing in H2. With a fixed annealing time in H2, the luminescent intensity significantly increased with increasing annealing temperature. The possibility of the crystal as white light material was also discussed according to the luminescence properties.  相似文献   

10.
The aim of this study was to explore the effect of cerium ions on the formation and structure of hydroxyapatite (HAP). All particles, prepared by hydrothermal method, were synthesized at varied XCe = Ce/(Ca + Ce) (from 0 to 10%) with the atomic ratio (Ce + Ca)/P fixed at 1.67. Their morphology, composition and crystal structure were characterized by TEM, EPMA, XRD and FTIR. The results showed that in this composition range the apatite structure is maintained, Ce3 + ions could enter the crystal lattice of apatite and substitute Ca2 + ions. The doping of Ce3 + ions resulted in the decrease of the crystallite size with increase in XCe. The HAP particles without doping were short rods having a diameter from 10 to 20 nm and a length from 30 to 50 nm. They grew into long needles upon increasing XCe.  相似文献   

11.
This study was aimed to systematically investigate the luminescence response of SiO2:Ce3+ nanophosphors with different excitation sources. The powders were synthesized by using an urea assisted combustion method. SiO2:Ce1m% samples were also annealed at 1000 °C for 1 h in a charcoal environment to reduce incidental Ce4+ to partial Ce3+ ions. High resolution transmission electron microscopy (HRTEM) images of the as synthesized and annealed powder samples confirmed that the particles were spherical and in the size range of 3-8 nm in diameter. X-ray diffraction (XRD) and electron dispersion spectroscopy (EDS) results showed that the SiO2 was crystalline and pure. Diffused reflectance, photoluminescence (PL) and cathodoluminescence (CL) results of the SiO2:Ce3+ samples were obtained and compared with each other. The CL degradation and the surface reactions on the surface of the SiO2:Ce3+ were studied with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A clear improvement in the chemical stability of the SiO2:Ce3+ annealed at 1000 °C were obtained.  相似文献   

12.
To improve the infrared emission of Yb3+ ions doped in the garnet host Y3Al5O12 (YAG) single crystal through the energy transfer from Ce3+ to Yb3+ ions, the 〈1 1 1〉-oriented YAG:Ce3+, YAG:Yb3+, YAG:(Ce3+, Yb3+) and Yb3Al5O12:Ce3+ (YbAG:Ce3+) single crystals were grown using the Czochralski Method, respectively. The excitation and emission spectra of these garnet single crystals were characterized. In YAG:Ce3+ crystal, the yellow emission of Ce3+ ions present, but it was completely extinguished in YAG:(Ce3+, Yb3+) crystal and YbAG:Ce3+ crystal. However, the characteristic absorption bands of Ce3+ still existed in the excitation spectrum of Yb3+ ions, which showed that the energy absorbed by Ce3+ ions can be transferred to Yb3+ ions for its infrared emission.  相似文献   

13.
Sr3SiO5 phosphors co-doped with Eu2+ and Tb3+ were prepared by a conventional solid-state reaction method. The prepared Sr3SiO5:Eu2+,Tb3+,Li+ phosphors had characteristic luminescent spectra excited under near-UV excitation in which both the broadband spectrum assigned to Eu2+ and the line spectrum assigned to Tb3+ are observed, although Tb3+ is inactive with this photon energy in general. For Eu2+–Tb3+ codoped Sr3SiO5, energy transfer process takes place and the mechanism is ascribed to the overlap between the shorter Eu2+ luminescence band from the Sr3SiO5 crystal structure with two Sr sites and 5D4 energy level of Tb3+ ion. Due to the energy transfer, PL intensity of Eu2+ emission increased about 26 %. We suggest that this enhancement mechanism could shed light on the potential applications in white light-emitting diodes excited by near-UV light. In addition, the emission peak position near the orange region indicates that our system is a step towards a new class of wavelength sources for artificial lighting with improved PL intensity and lower energy consumption.  相似文献   

14.
A series of new green-emitting Ba2?x?2ySiO4:xEu2+, yGd3+, yR+ (R = Li, Na or K) phosphors were synthesized by the solid-reaction method. X-ray diffraction (XRD) and fluorescence spectrophotometer are utilized to characterize the crystal structure and luminescence properties of the as-synthesized phosphors, respectively. The XRD patterns reveal that the doping of Gd3+, Eu2+ and R+ ions have no significant influence on the Ba2SiO4 phase. The green emission of Eu2+ ion associated with 4f65d1 → 4f7 can be obtained by 396 nm UV excitation source, which match well with the emission wavelength of UV-LEDs chip (380–420 nm). Moreover, the effect of charge compensator ions (Li+, Na+ or K+) on the luminescence intensity of (Ba, Gd)2SiO4:Eu2+ phosphors were also investigated. When introducing the Li+ ions into the (Ba, Gd)2SiO4 host lattices, the as-prepared phosphors show the strongest emission. The emission intensity of Ba1.95SiO4:0.04Eu2+, 0.005Gd3+, 0.005Li+ is about 1.39 times than that of Ba1.96SiO4:0.04Eu2+. Furthermore, the mechanism of energy transfer and concentration quenching of Ba1.982?xSiO4:xEu2+, 0.009Gd3+, 0.009Li+ phosphors are also discussed.  相似文献   

15.
Ce3+-activated yttrium aluminum garnet (Y3Al5O12:Ce, YAG:Ce) powder as luminescent phosphor was synthesized by the solid-state reaction method. The phase identification, microstructure and photoluminescent properties of the products were investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), absorption spectrum and photoluminescence (PL) analysis. Spherical phosphor particle is considered better than irregular-shaped particle to improve PL property and application, so this phosphor was granulated into a sphere-like shape by a spray-drying device. After calcinating at 1500 °C for 0, 4, and 8 h, the product was identified as YAG and CeO2 phases. The CeO2 phase content is decreased by increasing the calcination time or decreasing the Ce3+ doping content. The product showed higher emission intensity resulted from more Ce3+ content and larger grain size. The product with CeO2 was found to have lower emission intensity. This paper presents the crystal structures of Rietveld refinement results of powder XRD data.  相似文献   

16.
Perovskites with stable crystal structure and excellent catalytic performance have attracted extensive attention in peroxomonosulfate (PMS) activation, however, severe agglomeration has always been the main obstacle limiting the catalytic activity of them, so novel perovskite catalysts are urgently needed. In this study, three-dimensional ordered macroporous silica (3DOM SiO2) was prepared by colloidal crystal template method, then CeO2@LaMnO3/3DOM SiO2 was prepared by sol-gel method combined with impregnation method and used to activate PMS for urotropine (URO) degradation. CeO2@LaMnO3/3DOM SiO2 activated PMS system exhibited high URO removal efficiency and quick kinetic, as 99.98 % URO was degraded even within 30 min. The catalyst has a wide pH range and still has high catalytic activity in the presence of organic matter and inorganic ions. The three components in CeO2@LaMnO3/3DOM SiO2 showed a synergetic effect. CeO2 and LaMnO3 were uniformly loaded on 3DOM SiO2, which effectively avoided agglomeration. The specific surface area of CeO2@LaMnO3/3DOM SiO2 was 11.88 times that of LaMnO3 prepared by sol-gel method. There are two redox cycles of Ce3+/Ce4+ and Mn2+/Mn3+/Mn4+ in CeO2 and LaMnO3, respectively, which synergistically realize the activation of PMS. Both quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that that SO4?, OH and 1O2 jointly achieved the degradation of URO. In summary, CeO2@LaMnO3/3DOM SiO2 would be a promising candidate for practical wastewater treatment.  相似文献   

17.
The temperature dependence of the photoluminescence (PL) of the rare-earth ion activated Y2SiO5 was investigated from room temperature to 573 K. Ion activators such as Eu3+, Ce3+, Sm3+, Tb3+ and some of their combinations were studied in this study. The most efficient blue, green and red phosphors at elevated temperature were found by doping the (Ce3+ + Tb3+), Tb3+ and Eu3+ respectively, in this material system. Meanwhile, the relationship between the structure and the temperature dependence of the PL in Re x Y2–x SiO5 was also discussed.  相似文献   

18.
Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.  相似文献   

19.
Abstract

Ce3+-activated Gd3Al5O12 garnet, effectively stabilized by Lu3+ doping, has been developed for new yellow-emitting phosphors. The powder processing of [(Gd1?xLux)1?yCey]3Al5O12 solid solutions was achieved through precursor synthesis via carbonate precipitation, followed by annealing. The resultant (Gd,Lu)AG:Ce3+ phosphor particles exhibit typical yellow emission at ~570 nm (5d–4f transition of Ce3+) upon blue-light excitation at ~457 nm (the 2F5/2–5d transition of Ce3+). The quenching concentration of Ce3+ was determined to be ~1.0 at% (y = 0.01) and the quenching mechanism was suggested to be driven by exchange interactions. The best luminescent [(Gd0.9Lu0.1)0.99Ce0.01]AG phosphor is comparative to the well-known YAG:Ce3+ in emission intensity but has a substantially red-shifted emission band that is desired for warm-white lighting. The effects of processing temperature (1000–1500 °C) on the spectroscopic properties of the phosphors, especially those of Lu3+/Ce3+, were thoroughly investigated and discussed from the centroid position and crystal field splitting of the Ce3+ 5d energy levels.  相似文献   

20.
《Optical Materials》2014,36(12):2053-2055
The comparative study of the luminescent properties of Al2O3:Ti crystal in comparison with those for undoped Al2O3 crystal counterpart is performed under synchrotron radiation excitation with an energy of 3.7–25 eV. Apart from the main emission band peaked at 725 nm related to the 2E  2T2 radiative transitions of Ti3+ ions, the luminescence of excitons localized around Ti ions in the band peaked at 290 nm and the luminescence of F+–Ti and F–Ti centers in the bands peaked at 325 and 434 nm are also found in the emission spectra of Al2O3:Ti crystal. We show also that the luminescence of Ti3+ ions in Al2O3:Ti crystal can be effectively excited by the luminescence of excitons localized around Ti dopant as well as by the luminescence of F–Ti centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号